
2020024

Page 1 of 34

Summary

Flash sales are increasingly becoming the norm for brick-and-mortar stores, mainly in an
effort to redirect sales away from online stores. These strategies cause surges of shoppers
during these sales, resulting in many accidents that both damage products and injure
people as they rush to purchase their target goods. The importance of store layouts to
minimize the degree of such damage in stores has thus emerged, like in this problem.

For our model, we sought to minimise the financial losses to the store from these item
damages, referred to as the total loss, the dependent variable. We first identified the
main factors in the surge of shoppers: the positions of the most desirable goods, the
cashiers, and the presence of bottlenecking physical elements. The desirability of the goods
was assessed based on an index coined the Gross Happiness Index (GHI), which took
into account discounts, consumer rating and quantity remaining of each product. This
formed the basis of our model's functionality.

The layouts were converted into a 48x48 matrix to simplify computations, with each tile
representing a 1m by 1m square.

We then explored various ways in which consumers may damage items, such as knocking
them out of their shelves, fighting for the last remaining stocks and walking through the
crowd with the items. We realised that these were all related to shopper density in the
store. We thus derived a formula relating shopper density, item fragility, number
of unsold goods and the discounted price of the item to obtain the monetary loss
of one tile resulting from the damage of items. The sum of monetary loss of all the tiles
in the store was taken as the total loss.

To simulate the passage of shoppers through the various layouts, we used the a*
pathfinding algorithm to construct an agent-based model. The likelihood of a good being
the desired good of each shopper was based on the GHI of the good. Each agent,
representing an individual shopper, would go from the entrance to the shelf with the
desired good, the cashiers, and finally the exit. The various paths were then merged onto
one matrix to find the shopper density per tile and thus the total monetary loss.

A modular function was created to test large numbers of different item arrangements to
arrive at the optimum item arrangement based on GHI, which was determined to be one
with decreasing GHI from the cashier. The optimum “prominence” threshold (0.9),
which indicated the range of popular goods which should be displayed separately from
their department to minimise total loss, was also obtained.

Different floor plans were tested using these metrics. The optimal item arrangement
from above was used in different layouts hand-created by the team. Without changing
the size and shapes of shelves given, an optimal layout was found. However, given liberty
to modify shelves completely, the grid layout format was then determined as the most
optimal layout type and variants of it were tested to select the optimum layout which
minimised total loss.

2020024

Page 2 of 34

Table of Contents

Summary .. 1

Table of Contents ... 2

Introduction ... 4

Model .. 4

4.1 Operationalization of Consumer Preferences .. 4

4.1.1 Discount offered .. 4

4.1.2 Consumer rating ... 5

4.1.3 Quantity available .. 5

4.1.4 Gross Happiness Index (GHI) ... 5

4.2 Encoding Schema for Store Layout .. 5

4.2.1 Fundamentals ... 5

4.2.2 Layout components ... 6

4.2.3 Data representation .. 7

4.3 Simulating Consumer Behaviour .. 7

4.3.1 Behavioural Assumptions .. 7

4.3.1.1 Assumptions with regard to desired items .. 7

4.3.1.2 Assumptions with regard to other shoppers .. 8

4.3.1.3 Assumptions with regard to item damage .. 8

4.3.2 Simulation Principles .. 8

4.3.2.1 Fundamentals ... 8

4.3.2.2 In-store Pathfinding .. 8

4.3.3 Crowd Avoidance .. 9

4.4 Estimating Monetary Loss ... 9

4.4.1 Causes ... 9

4.4.2 Factors Affecting Loss .. 10

4.4.3 Item Fragility .. 10

4.4.4 Total Expected Loss ... 11

4.5 Model Evaluation .. 12

2020024

Page 3 of 34

4.5.1 Validation Against Real-world Behaviour .. 12

4.5.2 Robustness .. 13

4.5.3 Limitations .. 14

Model-guided Design .. 15

5.1 Approaches ... 15

5.1.1 Computational .. 15

5.1.2 Human-guided ... 15

5.2 Experiments (Note: in each experiment, the dependent variable was the
monetary loss) ... 17

5.2.1 Independent Variable: Item Placement in Original Layout 17

5.2.2 New possible layouts ... 19

5.2.2.1 Independent Variable: arrangement of shelves ... 19

5.2.2.2 Independent variable: Modifying the shelves (changing their dimensions) 20

Conclusions .. 22

6.1 Recommendations ... 22

References ... 24

Letter to Store Manager ... 25

Appendix .. 26

9.1 Code .. 26

9.1.1 Release of Code & Data .. 26

9.1.2 Image Processing ... 26

9.1.3 Core Simulation Routine .. 27

9.1.4 Item Placement ... 32

2020024

Page 4 of 34

 Introduction

Black Friday is an annual tradition that has been held in the US for decades (Pruitt,
2015). Held the day after Thanksgiving, the holiday sees retailers slashing prices on many
products in a bid to turn a profit. Consequently, many Americans hit the shops on Black
Friday every year, with 135.8 million Americans indicating that they would spend the
day shopping in 2015 (Pruitt, 2015). However, this rush for goods has resulted in many
accidents, injuring over 100 people from 2006 to 2018 (Crockett, 2019). Not only has this
resulted in injuries, but it has also resulted in the damage of many consumer goods, either
due to shoppers knocking over goods through carelessness or through consumers fighting
over them (Katz, 2019). Due to shoppers rushing to obtain a particular good and
scrambling to pay for it so as to save time to buy more goods from other retailers,
stampedes may even occur, causing injuries and damage to goods. Thus, Black Friday has
caused many producers to suffer losses instead of turning over profits.

Furthermore, in this digital age, more and more consumers are turning to online shops
like Amazon instead due to reasons such as convenience. As a result, more brick-and-
mortar shops are implementing flash sales in a bid to attract customers to purchase from
them instead of from online department stores, increasing the risk of suffering losses due
to damaged goods as a result of an uncontrollable influx of consumers.

Therefore, it has become increasingly essential to manage such instances of ‘human traffic’
so as to ensure that the endangered brick-and-mortar shops can achieve the intended
effect of turning a profit rather than suffering losses. The model developed by our team
aids this by manipulating store layout and product distribution to redirect shoppers in a
manner as to reduce the number of accidents.

Although similar studies have been done in the past where methods like Dijkstra’s
algorithm and Bellman-Ford’s algorithm were used to find the shortest path to obtain
goods in a store (Dela Cruz et al., 2016), the model developed by our team uses a novel
method as it involves manipulating both the store layout and the customer path, which
enhances its effectiveness.

 Model

4.1 Operationalization of Consumer Preferences
Examining the store data provided, we identified the discount offered, consumer rating,
and quantity available as factors likely to affect consumer preferences toward an item.

4.1.1 Discount offered
A consumer’s perception of the “value” of a discount is based on two factors: the absolute
monetary value of the discount (i.e. price − discounted price) and the percentage
discount (i.e. price–discounted price

price × 100%). Intuitively, as the discount amount and
percentage discount increases, the consumers' perceived gain from purchasing that good
would increase as they save more money from the original price. We hence “double-count”

2020024

Page 5 of 34

the discount in our modelling of consumer preferences by taking into account both
discount amount and percentage—this is necessary to reflect consumers’ tendency to place
more significant weightage on the extent of the discount offered than other factors in the
context of a flash sale situation. This is corroborated by Fam et al. (2019) who found that
'discounts and coupons are the two most highly ranked SP (sales promotion methods)
across the sampled countries' in their study.

4.1.2 Consumer rating
Consumer rating is taken as a baseline measure of product attractiveness, which represents
how consumers see an item regardless of whether it is on sale. Accordingly, consumers are
more likely to buy a more highly rated item.

4.1.3 Quantity available
Conversely, the lower the quantity of an item offered, the higher its perceived rarity. As
consumers are more likely to perceive their purchase as a better deal if they are among
the few able to get the item, goods with a lower stock will be more attractive to consumers.
This is a valid relationship. In fact, this is why many consumers are willing to queue up
for hours in harsh conditions just to purchase limited edition products from US brand
Supreme (Clifton, 2016).

4.1.4 Gross Happiness Index (GHI)
Taking into account all three factors above, we defined a Gross Happiness Index (GHI),
a measure of the total pleasure or utility derived by consumers from successfully
purchasing one unit of a given product. GHI was calculated with the following formula:

GHI(item) = amount discounted × percentage discount × consumer rating
quantity available

To verify that our operationalization is reasonable, we examined the GHI of a number of
items in the provided dataset. The most popular goods were the 5.3cu ft Slide-In Electric
Range, Stainless Steel (GHI = 212), the 30” Combination Double Electric Convection
Wall Oven with Built-In Microwave (GHI = 330), and the 24.7cu ft French Door
Refrigerator, Black Stainless Steel (GHI = 398).

This index could alternatively be interpreted as the relative desirability of an item—as
such, we calculated the probability that someone will aim to buy a specific item as:

P(buying	a	particular	item) = GHI(of	that	item)
∑ GHI

4.2 Encoding Schema for Store Layout
4.2.1 Fundamentals

In order to run a simulation of customer behaviour in a store, we had to encode its layout
and item positions in a format which can be interacted with programmatically. As the
problem statement provides us with a 48m × 48m floor plan, we chose to use a 48x48 grid
as the environment for our simulation, where each grid unit had dimensions of 1m by 1m.

2020024

Page 6 of 34

In order to faithfully recreate the given store layout, we extracted the original image and
converted the picture to black and white, removing all annotations and arrows. We then
downscaled the image to a 48x48 pixel bitmap (.pbm) and inverted the colours. This
process is shown in Figure 1.

With reference to Figure 1, the leftmost image is the original given image of the layout,
the centre image is the image in black and white, and the rightmost image is the image
converted to a bitmap.

4.2.2 Layout components
Hereafter, we refer to each pixel in the bitmap as a tile, representing a 1x1m area of the
store. 8 different tile types were identified, and each assigned a unique colour. Our final
encoding scheme for a store’s layout is displayed below:

With reference to Figure 2, traversable spaces refer to the black tiles. These are the areas
where shoppers can move. They include empty spaces and corridors between shelves. The
shelves are illustrated as the white tiles where items are placed, and the walls are the
purple tiles. They are just walls to divide/block shoppers from passing through, and no
items will be placed on them. We made this distinction as large items like those listed in
the provided spreadsheet (e.g. 85” TVs) are rarely placed along cashier queues or other

Figure 1: An illustration of the process described above.

Figure 2: a legend of the tile colours in the bitmap

2020024

Page 7 of 34

inconvenient locations. This also provides us with a utility to manually influence the
placement of items—though this was generally performed programmatically, as will be
elaborated upon later. Cashiers are illustrated as blue tiles, where people make their
payments. The cashier entrance is illustrated by the maroon tiles, and the cashier exit is
illustrated by the dark blue tiles. This allows us to optionally indicate where a queue for
a cashier will start and end. The rationale for needing to define queues in this manner
explicitly will also be elaborated upon further in later parts of the report. Finally, the
entrance and exit to the store are the bright red and bright blue tiles respectively.

4.2.3 Data representation
Our custom simulation software imports a bitmap of a store layout via the function
read_img_map(), separating each set of tiles of a given colour into its own 48x48 matrix,
as shown in Figure 3. By primarily dealing with the store’s layout as a set of matrices,
most computations in our simulation are reduced to matrix operations, maximizing
efficiency and minimizing simulation runtime. This is especially important due to the
large number of layouts which need to be tested.

4.3 Simulating Consumer Behaviour
4.3.1 Behavioural Assumptions

A number of assumptions about shopper behaviour were made, which informed the design
of our models and simulation.

4.3.1.1 Assumptions with regard to desired items
Firstly, we assumed that consumers desired only one good and knew what the desired
good was before entering the store. This also meant that the consumers did not impulse
buy goods other than the originally desired good. This is not an unreasonable assumption,
given that considering how crowded retail stores can be during retail sales, consumers will
often strategise to target a specific item of interest, and rarely stick around after
purchasing their desired good. This was a necessary assumption in simplifying the
movement of the agents towards the desired shelf.

Secondly, it was assumed that the shoppers have no prior knowledge of the item positions

Figure 3: Internal matrices

2020024

Page 8 of 34

in the store. This is a valid assumption, considering that the store’s layout is changed just
before the flash sale begins. Hence, this meant that the shoppers needed to perform a
search through the store to find their desired item. We used a*star search as an
approximation of human pathfinding.

Thirdly, we assumed that consumers do not know if the good that they wanted was already
out of stock before they entered the store. Even if a particular good is already out of stock,
consumers would still make their way towards the particular aisle. This is also a valid
assumption—this is the underlying reason why fights occur in the first place, as shoppers
try to snatch goods from other people. This was a necessary assumption because it allowed
us to simplify the code involved in modelling the behaviour of the agents.

4.3.1.2 Assumptions with regard to other shoppers
As shoppers have physical volume, they are unlikely to fit into the same region of space.
This phenomenon is responsible for congestion and jam formation as shoppers try to
squeeze past each other while moving through corridors, entrances and exits, drastically
slowing movement in those areas. Hence, shoppers would, as far as possible, avoid these
regions of congestion so as to get to their desired items quickly. This was a necessary
assumption because it improves the accuracy of the model by more realistically simulating
the behaviour of shoppers in real life.

4.3.1.3 Assumptions with regard to item damage
One final assumption is that the frequency of accidents and fights between consumers is
assumed to follow a power law with respect to the density of people. This is because the
more packed a particular walkway is, the more likely that shoppers would accidentally
knock over a particular good due to carelessness. Moreover, the more crowded a particular
aisle is, the more people there would be fighting over a particular good, hence the higher
the frequency of fights occurring. These probabilities would only start increasing in
extremely packed situations, because in moderately packed situations the likelihood of
these accidents is still reasonably low—for example, if only 10 people walked past an item
a day, the probability of an accident is negligible. Without a doubt, the frequency of fights
is also dependent on factors like the temperament and personalities of the shoppers.
However, it was not possible to take into consideration these subjective factors when
designing the model; besides, as the model intends to estimate the average loss, these
variables are unlikely to affect the final estimated loss in any case drastically.

4.3.2 Simulation Principles
4.3.2.1 Fundamentals
We adopted an agent-based approach for behavioural simulation, with parameters chosen
so that each agent roughly represented 10 real-world shoppers. Each agent followed a
simple set of rules based on the aforementioned assumptions of shopper behaviour, as
described below:

4.3.2.2 In-store Pathfinding

2020024

Page 9 of 34

Each agent was initialized with a stored list of target coordinates to a specified entrance
tile, desired item tile, cashier tile, and exit tile. The likelihood of a good being selected as
the desired item was based on its GHI, as described above, while specific entrance, cashier,
and exit tiles were selected from their respective matrices with equal likelihood.

Agents travelled between these tiles in a set sequence (i.e. entrance→target
item→cashier→exit), with routes between the tiles calculated via the a* pathfinding
algorithm. Briefly, a* is a graph traversal algorithm which performs a heuristic search for
the shortest path between nodes. It saves time by only checking a limited set of adjacent
nodes (the “open set”) to the current node at each step: for each of these nodes, it
estimates the total path cost by summing the distance travelled to that node and the
expected remaining distance to the target, as calculated by a distance heuristic (in this
case, the Euclidean distance between a node and the target node), then designating the
node with the lowest total path cost as the new current node.

We chose a* search as it is a better approximation of a human search for the shortest
path (where we are limited by possible paths within our lines of sight) and time-optimality
compared to other search algorithms, such as Dijkstra’s or Bellman-Ford.

4.3.3 Crowd Avoidance
This process also meant that individual agents did not interact in a shared world every
simulation tick; instead, interactions were iteratively computed between agents’ complete
paths through the shop, making the model “approximate”.

To compute these “interactions”, a shared density matrix was instantiated, and the
drawing of paths commenced. Every time an individual path included a tile, that tile’s
density was incremented by 1. As previously assumed, people seek out areas of lower
pedestrian density while searching for a path through an environment. Therefore, we
defined an avoidance coefficient (A) based on the density in a tile. We used this coefficient
to increase the distance to tiles with higher densities. For example, the distance to an
adjacent tile of 0 density is simply the Euclidean distance (1), but the distance to an
adjacent tile of density 1 would be the Euclidean distance + density × A, which would
be (1+A). Hence, this coefficient has the effect of artificially increasing the distance
travelled in more crowded routes, so that the agents would avoid them and take less
crowded paths instead. We used A=0.1 for all our simulations. While the avoidance
coefficient was arbitrarily determined, it does have a physical meaning—the value chosen
means that an agent density of 10 at a tile would make it twice as difficult to get to that
tile.

4.4 Estimating Monetary Loss
4.4.1 Causes

There are various ways consumers may damage goods during flash sales. As crowds of
shoppers are pushed along the store in an effort to rush to their purchases, some shoppers
may be pushed towards the shelves to knock down small products on the shelves,

2020024

Page 10 of 34

damaging them. Larger products placed on the floor may also be knocked down or
squashed between crowds to be damaged.

Products may also be damaged during the shoppers’ efforts to acquire them. Removing
goods from the shelves in the middle of such a crowd would be difficult and may result in
the goods being dropped onto the floor. Fights may also occur between shoppers as they
try to acquire the limited stock of goods, pulling on the goods and damaging them.

After the shoppers acquire the good, the good may be damaged as they try to wedge out
of the crowd, squeezing against the good. Shoppers holding large products are especially
prone to this as they may lose balance, injuring themselves and damaging the product.

Furthermore, in a sale situation where desirable goods are in limited quantity, fights may
occur due to multiple consumers believing that they have the right to buy a particular
unit. This can further cause damage to units being fought over as they may be roughly
handled during a scuffle. In addition, if a fight were to break out amongst cramped shelves,
the products on the shelves may be knocked off, causing damage.

Evidently, the above cases are more likely to occur as there are more shoppers, represented
by a higher human density. As stated above, the frequency of cases would only increase
in extremely packed situations. Hence, the function for the amount of damage inflicted is
nonlinear with respect to density, with the amount of damage taken to be proportional
to the human density squared.

Amount of damage inflicted = density2

4.4.2 Factors Affecting Loss
Thus, we assumed that the monetary loss for a tile was a function of the amount of
damage inflicted in that tile and the properties of items placed nearby the tile.

In all, the estimated loss due to the damage to an item from pedestrian density in a given
tile was a function of the amount of damage inflicted, the item’s unit monetary value, a
decay term taking into account the attractiveness and quantity of the item, and the item’s
fragility.

The unit monetary value was taken to be the discounted price, as it would be the amount
of money received by the store if the good was undamaged. The decay term was taken
into account because the quantity of an item remaining will decrease at a higher rate if it
is more sought after.

4.4.3 Item Fragility
Fragile goods are more likely to be damaged to a more severe extent, resulting in more
significant monetary losses. We defined a fragility index, FI, to represent the likelihood of
an item being damaged in the store. This was calculated using real-life data of the
percentage of the product damaged in shipping (Blumberg, 2005).

FI(item) = % of items returned due to shipping damage × % of all items returned

2020024

Page 11 of 34

FI can be understood as the probability that an item would be damaged as a result of
being shipped once. Therefore, we need to relate the amount of damage inflicted due to
pedestrian density to the “number of times shipped”. We make an educated guess that
1000 people walking within 1 metre of an item on a busy day will cause an equivalent
amount of damage to a product being shipped 10 times. We use this guess to define a
constant, c, relating the arbitrarily defined amount of damage inflicted to our fragility
index and “number of times shipped”:

10002

𝑐 = 10

𝑐 = 100000

With this constant, we define a density index, DI, calculated:

DI(tile) = density2

100000
4.4.4 Total Expected Loss

The total monetary loss due to density at a particular tile was equal to the summation of
monetary loss to items in the adjacent tiles.

To find this monetary loss to items, we used the following formula:

Monetary loss to item in adjacent tile

= (Di × Fi) × discounted price of item × ∫ qty of item
1

0
dt

Where t is the proportion of the day passed.

If items are still remaining after the sale,

∫ qty of item
1

0
dt = remaining qty + ½ (initial qty × (initial qty − remaining qty))

Where

remaining qty = item qty – expected purchased qty

And

expected purchased qty = P(item purchase) × number of agents

If items are all bought,

∫ qty of item
1

0
dt = ½ (initial qty × time sold out)

Where

2020024

Page 12 of 34

time sold out = initial qty
expected purchased qty

With these operations, we could evaluate the total monetary loss per tile, which could be
summed to obtain the estimated monetary loss over the entire store. Hence, we had an
operation that maps a matrix of pedestrian density to a matrix of estimated monetary
loss.

4.5 Model Evaluation
4.5.1 Validation Against Real-world Behaviour

We found that our model could successfully simulate many observed pedestrian
behaviours, including bottlenecking at tight corridors and jamming at intersections. An
example with random item layout is shown below, demonstrating these characteristics.

Figure 4: running our simulation on the given layout with randomised item arrangement

With reference to Figure 4, the legend indicates that dark blue areas have the lowest
agent density, followed by green areas and yellow areas. The green colour of the walkways
along the cashiers shows the high density of agents in the narrow corridor, especially at
the even narrower exit. Smaller spikes in human density can also be seen in the
intersections of the walkways between shelves, as labelled by the red arrows in Figure 4.

The simulation also produced results that matched intuitions about item positioning. As
stated above, if popular items are placed near the entrance, exit, and cashier, the paths
to obtain these goods would be shorter, resulting in the decrease of total population
density from these paths and thus decreasing total loss. This is evidenced by Figure 5.
The simulation was run twice: once for a layout where high GHI goods are placed near
the entrance, exit and cashiers, and another time for a layout where low GHI goods are
placed near the entrance, exit and cashiers. The results of the simulations are shown in
Figure 5.

2020024

Page 13 of 34

Figure 5: a comparison of simulations run for two different arrangements of goods.

The left side of Figure 5 is the simulation run for the layout where goods with high GHI
are placed close to the entrance, exit and cashiers, while the right side is the same results
for the low GHI layout. The top half shows the arrangement of the goods with different
GHIs, and the bottom half shows the monetary loss. As can be seen, the top left image
shows that high GHI items (red) are placed close to the entrance, followed by low GHI
items (blue) placed further away. The opposite is true for the top right figure.
Consequently, the bottom left image shows that the average monetary loss for the layout
where high GHI goods are placed close to the entrance is 17.99, and the average monetary
loss for the low GHI layout is 24.6, which is considerably higher.

Additionally, as we were trying to calculate a cumulative loss value, ultimately, the vast
majority of time-varying behaviour did not benefit analysis and was computationally
wasteful to simulate. For example, a simulation encompassing oscillation of passing
direction at a bottleneck will average out to a diffuse region of high density around the
bottleneck, producing the same result as our model. The model hence essentially simplified
this process to save on computational power.

4.5.2 Robustness
However, since the simulation is iterative, results technically depend on agent order,
though this effect likely diminishes with larger agent numbers. Furthermore, the item
positions on each shelf were also randomized for each replicate, introducing further
variance to the results of the model. This made the model stochastic as the results were
heavily influences by random factors.

2020024

Page 14 of 34

To account for this effect, we ran 10 replicates of each simulation each with randomized
agent orders and item positions. This would have normalized the variations of the results
stemming from the agent orders. Fortunately, this barely hindered computation, as the
operation is fully parallelizable across multiple CPU cores. On top of this, we computed
the standard deviation for the 10 replicates, allowing the comparison of preciseness
between layouts and their corresponding item arrangements. The stochasticity was thus
overcome to some degree, making the model robust.

4.5.3 Limitations
Despite the strengths of our model, every model has its limitations.

Firstly, the fragility index formulated by our team may not be completely accurate. This
is because the fragility index was calculated based on shipping data, provided by
Blumberg (2005). The data provided statistics about the average percentage of a
particular product type getting damaged in shipping. For instance, according to the book,
on average, 2.36% of all desktop computers get damaged in shipping. This percentage was
used as an indication of the fragility of the good since goods which are more likely to get
damaged during shipping are likely more fragile. However, this data has two main
shortcomings. Firstly, according to the book, on average, 2.232% of all televisions get
damaged during shipping. However, this percentage does not make a distinction between
different types and sizes of televisions, while the store inventory provided includes
televisions with sizes ranging from 30 inches to 85 inches. Since the data provided does
not make a distinction between them, they were all assumed to have the same fragility
index. This is not entirely accurate, since size may play a part in affecting the fragility of
the item.

Another limitation of the data is that it does not include the statistics for certain goods.
For instance, the average percentage of goods getting damaged in shipping was not
provided for robot vacuums and gaming consoles, both of which appear in the store
inventory. However, the data does provide such statistics for all consumer electronics and
major appliances on average. Major appliances referred to necessities like refrigerators and
washers, while consumer electronics generally referred to entertainment products like
laptops and televisions. Hence, for items on the store inventory whose data was not
provided, average data for all major appliances/consumer electronics had to be used,
depending on the particular good. This could have resulted in inaccuracy since the actual
average percentage of robot vacuums (for example) getting damaged in shipping may be
different from the average percentage of all appliances getting damaged in shipping.

These two limitations mentioned above can be mitigated by referring to a variety of
sources in determining the fragility index. However, due to the short period available in
coming up with the improved layout, there was insufficient time to carry out a meta-
review of real-life statistics.

2020024

Page 15 of 34

Another limitation arises due to the inability of the layout/model in taking into account
subjective factors. As mentioned above, the likelihood of damage also depends on the
personalities of the customers, as short-tempered consumers are more likely to get into
fights/arguments, which may lead to damaged goods. However, such subjective emotions
cannot be modelled via mathematical means; thus, this is an inevitable limitation.

One other limitation of the layout/model is that it does not take into account the different
brands of the goods on sale. According to the store inventory provided, the items on sale
are manufactured by different brands like Brand FF, Brand M, Brand W etc. The
branding will likely have a significant impact on the gross happiness index (GHI) because
consumers will likely derive more pleasure when they purchase a brand that is more
famous and well known, which, as mentioned above, is why many consumers go after
Supreme products (Clifton, 2016).However, the different types of branding were not taken
into account in formulating the GHI, because of the simple reason that based on the brand
names provided, the more popular brands could not be distinguished from the less popular
brands, and the significance of branding could not be factored into the formula for the
GHI.

Model-guided Design

5.1 Approaches
5.1.1 Computational

Using software to randomise the layout of the shelves was considered. However, doing so
was determined to be extremely time-consuming. This was because the total number of
shelves and checkout stations was 53. Even accounting for shelves with the same
dimensions, the total number of ways to permute their physical locations in space was
still an extremely large number (order of magnitude ~40). Furthermore, other than the
location of the different shelves, other factors also came into play like whether the shelves
are positioned horizontally, vertically or at various angles, further increasing the total
number of ways to arrange them. Machine learning approaches—genetic algorithms and
simulated annealing among them—were considered, but ultimately abandoned due to
massive size of the search space.

In the end, a modular function was created to allow for different organisational methods
to be used for item placement within the space and item organisation based on GHI and
fragility. The modularity of this function allowed for the addition differ

5.1.2 Human-guided
Thus, our team decided to manually design layouts which we deemed suitable for a flash
sale, iterating upon them based on simulation results. This was possible as we were able
to edit the layouts directly with an image editor rather than editing every value of the
matrix, allowing for rapid creations of layouts.

We researched a list of commonly used store layouts, such as the forced-path layout, the
grid layout, the geometric layout etc. (“Retail Store Layout Design and Planning”, n.d.).

2020024

Page 16 of 34

Some of these layouts were deemed to be not optimal for flash sales, as seen below. We
decided that the grid layout was the best for flash sales and designed floor plans around
this layout. The matrix model mentioned was then used to test which layout allowed for
the lowest likelihood and extent of damage.

The various layouts available for design are as follows:

Forced-path layouts are the layouts widely used by Dutch furniture retail giant IKEA
where consumers are forced to move through the entire store. Such a layout is not optimal
for the flash sale since consumers generally have something they desire and would not
want to waste time moving around the entire store. An example of a forced-path layout
is shown in Figure 6.

Figure 6: An example of a forced-path layout. Retrieved from "Retail Store Layout Design and Planning", n.d.

Similarly, loop layouts, which force customers to go one entire loop around the store, are
also not feasible for the same reason.

Diagonal layouts where the shelves are arranged diagonally are also not optimal for flash
sales, because arranging the shelves diagonally would result in narrower aisles which lead
to an increased likelihood of damage. The given layout does include a row of diagonally
arranged shelves. An example of such a layout is shown in Figure 7.

Figure 7: An example of a diagonal layout. Retrieved from "Retail Store Layout Design and Planning", n.d.

2020024

Page 17 of 34

Grid layouts were deemed to be optimal for flash sales because it allows for more efficient
movement of customers and greater distance between shelves allowing for reduced
likelihood of damage. The only downside of the grid layout is the lack of visual and
aesthetic appeal. However, this is generally not a consideration during a flash sale. An
example of a grid layout is shown in Figure 8.

Figure 8: An example of a grid layout. Retrieved from "Retail Store Layout Design and Planning", n.d.

Various grid layouts were designed based on the principle that the most popular items
with the highest GHI should have the greatest spacing around them, so as to accommodate
higher numbers of agents (shoppers) and hence minimize human density and thus item
damage.

5.2 Experiments (Note: in each experiment, the dependent variable was the
monetary loss)
5.2.1 Independent Variable: Item Placement in Original Layout

In this section, the variable tested was the different methods of arranging items given
their different GHIs on the default shelves provided.

Our baseline was a random initialisation of the shelf and item positions on the original
layout, which resulted in a loss of 17.83. Visualisations of the layout generated, pedestrian
density, and loss are provided in Figure 9.

: Maps of random item arrangement

0

20

40

60

Density

Pedestrian Density

100

200

300

GHI

Store Layout

0.0

0.2

0.4

0.6

Loss

Mean Loss = 17.83 SD = 1.92

Figure 9: Maps of random initialisation of item arrangement

2020024

Page 18 of 34

Using the mathematical model, the shelves of products were rearranged to yield the lowest
total loss. We refined this arrangement further to place the items with higher GHI closer
to the cashier (in terms of Euclidean distance), and items with lowest GHI further away
from the cashier. This further lowered the monetary loss to 11.69.

Placing the high GHI goods closer to the cashier allowed the minimisation of total loss as
the paths taken by the shoppers, which involved moving from the good to the cashiers,
decreased in length. Thus, the total density contributed by these paths decreased, leading
to the decrease in total density in the store and hence the decrease in total loss, which is
visible when comparing Figure 10 to Figure 9.

Up to this point, item placement has not taken into consideration product category, as
this factor is not taken into account in the agent pathfinding—that is, agents will find a
path to an item just as easily, whether or not they are sorted into departments or not. Of
course, actual shoppers would find it much easier to search for items according to category.
Therefore, any practical store layout would only place a limited number of high GHI items
in individual shelves, while all other items would be sorted by department for easier access.

In our code, we accounted for this factor by determining a prominence threshold, P,
representing the percentile of GHI above which we consider an item popular enough to
be assigned its own display. First, items above that threshold were placed in positions
closer to the cashier, in terms of decreasing GHI, regardless of category. Items were then
assigned positions according to their category, with their distance from the cashier
determined by the category’s average GHI. Positions of items within their own category
area were further sorted by item GHI. An illustration of this sorting procedure is shown
below:

Prominence thresholds ranging from 0 to 0.9 were tested, with 0.9 being the optimal
“prominence threshold” value, resulting in the lowest loss value of 11.2. A graph of loss
against threshold is displayed in Figure 11.

0

20

40

60

Density

Pedestrian Density

0.0

0.2

0.4

0.6

0.8

Loss

Mean Loss = 11.69 SD = 1.74

100

200

300

GHI

Store Layout

Figure 10: Maps of item arrangement of decreasing GHI from cashier

2020024

Page 19 of 34

Figure 11: Prominence against loss

As seen in Figure 11, although a trend is observed, the large error bars indicate that it
may not be significant. However, this is ideal as it indicates that sorting by department
does not greatly affect the loss, allowing for easier identification by customers when they
visit the store.

5.2.2 New possible layouts
5.2.2.1 Independent Variable: arrangement of shelves
Many designs were made by rearranging the given shelves (without changing the
dimensions), and testing was then done on the layouts. The algorithm for item
arrangement followed that from section 4.2.1, with a prominence threshold value of 0.9
and an arrangement of decreasing GHI from the cashier. 5 generated layouts and their
associated loss values are presented below in Figure 12:

The pedestrian heat-map of the final layout can be found in Figure 12. A spike in
pedestrian density around the corner of the walls of the walkway and funnelling through
the walkway can be seen.

0

1
2

3

4

5
Loss

Mean Loss = 88.44 SD = 5.67

0

2

4

6

8
Loss

Mean Loss = 32.98 SD = 1.65

0.0

0.5

1.0

1.5
Loss

Mean Loss = 17.71 SD = 1.65

0.0

0.3

0.6

0.9

1.2
Loss

Mean Loss = 9.71 SD = 0.74

0.0

0.3

0.6

0.9

Loss

Mean Loss = 15.24 SD = 1.4

Figure 12: Maps of possible arrangements of shelves

2020024

Page 20 of 34

A mean loss of 9.71 and a standard deviation of 0.74 was recorded as seen in the last map
of Figure 13, the bottommost map, significantly lower than the mean loss of 11.69 of the
original layout as shown in Figure 10.

With reference to Figure 10, for the
same item arrangement on the given
layout, the monetary loss was 11.69.
However, as can be seen in Figure 12,
the monetary loss for the chosen final
layout was only 9.71, which is
objectively a lot lower than that of the
given layout. This can be explained
with various factors. Firstly, in the
given layout, there is very little space
in between each shelf, with most of the
corridor widths being as narrow as 1
metre. In contrast, with reference to
Figure 12, there is at the very least a 2
metre spacing between each shelf, with
some spacings being as wide as 3 or 4

metres. This helps to greatly reduce the human density around the items, which is
especially important for the more fragile items. In addition, another main difference lies
in the fact that in the original layout, there are not many paths which consumers can
take. For instance, when consumers are trapped in between two long shelves, they only
have two available paths, which results in a high human density. In contrast, with
reference to Figure 12, as far as possible, the long shelves were alternated and interspersed
with shorter shelves. This is so as to provide shoppers (agents) with as many available
routes as possible so that they can disperse themselves (according to the avoidance
coefficient as mentioned above), allowing for minimized human density around the items.
These are two main reasons why our final layout proves superior to the given layout.

5.2.2.2 Independent variable: Modifying the shelves (changing their
dimensions)

The following experiments / tests assume that the dimensions of the shelves can be
changed and modified accordingly. A forced-path layout was attempted, shown below in
Figure 14. However, this led to a high loss value of 51.49 as all customers were forced

Figure 13: Pedestrian density heat-map of final layout

0

20

40

60

Density

Pedestrian Density

2020024

Page 21 of 34

down the same route, increasing density.

Figure 14: Forced-path layout

As such, this was improved by adding shortcuts between sections of the forced path
without any goods, allowing customers with goods nearer the end of the forced path to
avoid taking the main path, alleviating some of the density there. The simulation result
is as shown in This significantly reduced the loss value from 51.49 to 29.59. However, this
was still higher than the default. From this, it was theorised that a larger open space
would allow for lower loss value. Hence, the forced-path layout was confirmed to be
unsuitable and a more open concept was developed.

Figure 15: forced path layout with shortcut

The final experiment involved modifying the dimensions of the shelves to the point where
each shelf only housed one item. Doing so allowed for the maximum space between shelves.
The layout and arrangement of items on the shelves, the pedestrian density, as well as
the loss value can be found in Figure 16

0

20

40

60

Density

Pedestrian Density

100

200

300

GHI

Store Layout

0.0

2.5

5.0

7.5

Loss

Mean Loss = 51.49 SD = 5.66

0

20

40

60

Density

Pedestrian Density

100

200

300

GHI

Store Layout

0.0

0.5

1.0

1.5

2.0

Loss

Mean Loss = 29.59 SD = 2.33

2020024

Page 22 of 34

Figure 16: item arrangements, pedestrian density, and loss value diagrams for the 'open' layout.

With reference to Figure 16, it can be seen that for this layout, the shelves and items
were arranged such that the items with high GHI were placed on shelves that were spread
far apart, and items with low GHI were placed on shelves that were placed closer together.
Thus, it prioritises minimizing human density around the shelves containing the high GHI
goods. This strategy is shown to be highly effective, as evidenced by the pedestrian density
simulation result, where most of the bitmap is dark blue in colour (low density). This is
also evidenced by the mean loss result, where the mean monetary loss is only 5.4, the
lowest result. Further iterations on this design were attempted, by selectively moving
shelves with the highest loss, but no further improvements were achieved, indicating that
this arrangement is close to the optimum possible.

Conclusions

The optimum item arrangement keeping the given layout is shown in Figure 5 (left side),
with a loss of 17.99.

These shelves can be shifted around (while keeping the dimensions) to form the optimum
layout with a loss of 9.71, as shown in Figure 12.

However, assuming modifying the dimensions of the shelves is allowed, it is possible to
design a layout with even lower total loss of 5.4, as shown in Figure 16.

6.1 Recommendations
In this model, layouts were manually designed and tested using the simulation program.
This was because testing each layout required considerable amounts of time; hence it was
not feasible to use a randomizer program to come up with every possible layout
combination and test every single one of them due to the sheer number of layout
combinations. In future studies, given sufficient time and software resources, this approach
can be made to make sure that the entire exhaustive list of possible layouts is tested, to
come up with a definite optimum layout.

Additionally, in future studies, with more time resources, a larger number of studies can
be consolidated to obtain more comprehensive statistics, such as the % of a particular

0.000

0.025

0.050

0.075

Loss

Mean Loss = 5.4 SD = 0.87

0

20

40

60

Density

Pedestrian Density

100

200

300

GHI

Store Layout

2020024

Page 23 of 34

good getting damaged in shipping. This would allow for a more accurate determination
and refining of the fragility index.

As mentioned above, due to the lack of reliable statistics, we also had to come up with a
guess that 1000 people walking within 1 metre of an item on a busy day would cause the
same amount of damage to the product as the product being shipped 10 times. In future
studies, comprehensive analysis can be done on real-life customer behaviour, to more
accurately determine how much damage would be done by 1000 customers walking within
1 metre of an item in 1 day. This was not done in this paper due to a lack of reliable
sources. In addition, in this paper, we assumed that the agents, like shoppers in real-life,
would tend to avoid crowded routes and use less-crowded routes instead to get to their
destination faster. However, the extent to which shoppers in real-life exhibit this
behaviour is unknown. In other words, in real-life, the precise ‘threshold’ of human density
at which shoppers begin to utilize alternative routes is not known. Hence, the avoidance
coefficient developed by our team might have been too large or too small. In future studies,
more comprehensive research on shopper behaviour can be conducted to come up with a
more accurate avoidance coefficient.

A similar issue was faced when coming up with the relationship between item damage
and human density. As mentioned above, in this report, item damage was taken to be
proportional to the square of the human density. Although it is a reasonable assumption
that the amount of damage has a nonlinear relationship with density, the exact
relationship is unknown. More analysis of consumer behaviour can be done in future
studies to ensure the determination of a more accurate relationship. Nevertheless, the
relationship between the amount of damage and human density can never be accurately
determined, because as mentioned above, this is also influenced by subjective factors like
the emotions and personalities of the shoppers.

2020024

Page 24 of 34

References

Blumberg, D. F. (2005). Introduction to management of reverse logistics and closed loop
supply chain processes. Boca Raton: CRC Press.

Clifton, J. (2016, July 19). Why Are So Many People Obsessed with Supreme? Retrieved March
20, 2020, from https://www.vice.com/en_us/article/5gq393/supreme-and-the-psychology-of-
brand-devotion

Crockett, Z. (2019, November 23). The tragic data behind Black Friday deaths. Retrieved
March 16, from https://thehustle.co/black-friday-deaths-injuries-data/

Dela Cruz, J. C., Magwili, G. V., Mundo, J. P. E., Gregorio, G. P. B., Lamoca M. L. L.,
& Villasenor J. A. (2016). Items-mapping and route optimisation in a grocery store using
Dijkstra’s, Bellman-Ford and Floyd-Warshall Algorithms. 2016 IEEE Region 10
Conference (TENCON), 2016. doi: 10.1109/TENCON.2016.7847998

Fam, K. S., Brito, P. Q., Gadekar, M., Richard, J. E., Jargal, U., & Liu, W. (2019). Consumer
attitude towards sales promotion techniques: a multi-country study. Asia Pacific Journal of
Marketing and Logistics, 31(2), 437–463. doi: 10.1108/apjml-01-2018-0005
Katz, L. (2019, November 29). Black Friday 2019 fights prove shopping for deals is as perilous as
ever. Retrieved March 20, 2020, from https://www.cnet.com/news/black-friday-2019-fights-
prove-deal-hunting-is-as-perilous-as-ever/
Pruitt, S. (2015, November 23). What’s the Real History of Black Friday? Retrieved
March 16, 2020, from https://www.history.com/news/whats-the-real-history-of-black-
friday

Retail Store Layout Design and Planning. (n.d.). Retrieved March 19, 2020, from
https://www.smartsheet.com/store-layout

2020024

Page 25 of 34

Letter to Store Manager

Dear Sir / Mdm,

Thank you for your continuous support to our team. Attached is our proposed layout for
the upcoming 2020 Flash Sale.

After doing extensive research on the types of store layouts, we determined that the grid
layout is the best choice for a flash sale. We determined that the factors affecting the
popularity of a good are the customer rating, the discount amount, as well as the quantity
of the good available. We took these into account to calculate the Gross Happiness Index
(GHI), which measures the popularity of the good and hence the likelihood of the good
being purchased by shoppers.

Armed with the above knowledge, our team tirelessly designed many grid layouts for the
store. In designing these layouts, we followed various guidelines which we believed would
lead to the lowest amount of damage to the items. For instance, shelves were arranged as
spaciously as possible to minimize human density; we placed the checkout area close to
the exit to ensure that the customers who have paid for their goods would leave efficiently
and not obstruct those who have not purchased their goods; and finally, based on the
GHI of the goods, we arranged the goods in such a way that would lead to the least overall
monetary loss.

We then built a computer program to test the layouts that we had designed. The program
simulated the different routes that the shoppers would be able to take for the different
layouts. The agents in the model simulate the behaviour of shoppers in real-life, such as
how shoppers would avoid more crowded paths and utilize longer, but less crowded paths
to reach their destination more quickly. We also managed to obtain data from reliable
published sources to calculate the fragility of the different goods on sale. Thus, the final
layout you see is the one that has come out on top through all the rounds of rigorous
testing. This layout allows for the lowest human density around the most fragile and
expensive items, reducing the overall expected monetary loss.

However, do note that our floor plan cannot prevent fights between shoppers, as this
depends entirely on the personalities of the shoppers. Hence, please consider hiring
security guards and installing security cameras or warning signs in the store to deter fights
between shoppers.

We wish you the best of luck with your event.

Most Sincerely, The IMMC team

2020024

Page 26 of 34

Appendix

9.1 Code
9.1.1 Release of Code & Data

9.1.2 Image Processing
read_img_map <- function(img_path, targets_encoded=FALSE) {
 img <- read.pnm(img_path)

 #ffffff = Walls (all non-traversable tiles, including shelves and walls)
 green_minus_target = img@green
 green_minus_target[which(green_minus_target != 0)] <- 1
 walls_mat <- img@red + green_minus_target + img@blue
 walls_mat[which(walls_mat != 3)] <- 0
 walls_mat <- walls_mat/3

 #cc00cc = Blocked walls (walls where items cannot be placed)
 blocked_mat <- img@red + img@blue + img@green
 blocked_mat[which(blocked_mat!=1.6)]<-0
 blocked_mat <- blocked_mat / 1.6

 walls_mat <- blocked_mat+walls_mat

 #00ffff = Cashiers (for now, the second target for all agents)
 cashier_mat <- img@green + img@blue + img@red
 cashier_mat[which(cashier_mat != 2)] <- 0
 cashier_mat <- cashier_mat/2

 #330000 = Cashier inlet (for supporting queueing behaviour)
 cashier_in_mat <- img@red
 cashier_in_mat[which(cashier_in_mat!=0.2)] <- 0
 cashier_in_mat <- cashier_in_mat * 5

 #000033 = Cashier outlet (for supporting queueing behaviour)
 cashier_out_mat <- img@blue
 cashier_out_mat[which(cashier_out_mat!=0.2)] <- 0
 cashier_out_mat <- cashier_out_mat * 5

 #ff0000 = Entrances (possible source points)
 entrance_mat <- img@red
 entrance_mat[which(entrance_mat!=1)] <- 0
 entrance_mat = entrance_mat - walls_mat + blocked_mat

 #0000ff = Exits (final target for all agents)
 exit_mat <- img@blue
 exit_mat[which(exit_mat!=1)] <- 0
 exit_mat = exit_mat - walls_mat - cashier_mat + blocked_mat

 #00xx00 = Target objects (for now, the first target for all agents)
 # convert back to 0-255 encoding
 if(targets_encoded == TRUE) {
 target_mat <- img@green*255
 target_mat[which(target_mat == 255)] <- 0
 target_df <- make_df_full(target_mat)
 target_df <- target_df[which(target_df$value != 0),]
 target_df$value = 255 - target_df$value
 target_df <- target_df[order(target_df$value),]
 target_df$ghi <- storedata$ghi
 } else {
 target_df <- NULL
 }

 store_layout <- list("walls_mat" = walls_mat, "blocked_mat" = blocked_mat,
"cashier_mat" = cashier_mat, "cashier_in_mat" = cashier_in_mat, "cashier_out_mat" =
cashier_out_mat, "entrance_mat" = entrance_mat, "exit_mat" = exit_mat, "target_df" =
target_df)

2020024

Page 27 of 34

 return(store_layout)
}

create_agent_list <- function(store_layout, n_agents) {
 walls_df <- make_df(store_layout[["walls_mat"]], 1)
 cashier_df <- make_df(store_layout[["cashier_mat"]], 1)
 entrance_df <- make_df(store_layout[["entrance_mat"]], 1)
 exit_df <- make_df(store_layout[["exit_mat"]], 1)
 target_df <- store_layout[["target_df"]]

 # we sample with replacement for each step to generate dfs of targets for all agents
 entrance_tiles <- entrance_df[sample(nrow(entrance_df), size=n_agents, replace =
TRUE),]
 target_tiles <- target_df[sample(target_df$value, prob=target_df$ghi, replace=TRUE,
size=n_agents),]
 cashier_tiles <- cashier_df[sample(nrow(cashier_df), size=n_agents, replace =
TRUE),]
 exit_tiles <- exit_df[sample(nrow(exit_df), size=n_agents, replace = TRUE),]

 agent_list = list()

 for(i in 1:n_agents) {
 entrance_coords = as.numeric(entrance_tiles[i,])
 target_coords = as.numeric(target_tiles[i,1:2])
 cashier_coords = as.numeric(cashier_tiles[i,])
 exit_coords = as.numeric(exit_tiles[i,])
 agent_list[[i]] = list(entrance_coords, target_coords, cashier_coords,
exit_coords)
 }
 return(agent_list)
}

9.1.3 Core Simulation Routine
library(dplyr)
library(grid)
library(reshape2)
library(pixmap)
library(ggplot2)
library(plotly)
source("astar.R", local=TRUE)
source("searchmaze.R", local=TRUE)
source("storedata.R", local=TRUE)

reverse_encode <- function(store_layout, img_w=48, img_h=48) {
 walls_mat <- store_layout$walls_mat
 entrance_mat <- store_layout$entrance_mat
 exit_mat <- store_layout$exit_mat
 target_df <- store_layout$target_df
 target_mat <- matrix(0, img_w, img_h)
 for(row in 1:nrow(target_df)) {
 coord = as.numeric(target_df[row, 1:3])
 target_mat[coord[1], coord[2]] <- coord[3]
 }
 img_red <- walls_mat + entrance_mat
 img_green <- ((walls_mat + cashier_mat)*255 - target_mat)/255
 img_blue <- walls_mat + cashier_mat + exit_mat

 img_array <- array(c(img_red, img_green, img_blue), dim=c(48,48,3))
 img <- pixmapRGB(img_array)
 return(img)
}

plot_mat <- function(mat) {
 df = make_df_full(mat)
 p<-ggplot(df, aes(x=x,y=y,fill=value)) +
 geom_tile() +
 scale_y_continuous(breaks = seq(0, 48, 1), limits = c(0, 48.5), minor_breaks =
NULL) +
 scale_x_continuous(breaks = seq(0, 48, 1), limits = c(0, 48.5), minor_breaks =
NULL) +

2020024

Page 28 of 34

 coord_equal() +
 scale_fill_viridis_c() +
 theme_minimal() +
 theme(axis.title = element_blank(),
 axis.text = element_blank(),
 legend.position = "none")
 p<-ggplotly(p)
 return(p)
}

plot_df <- function(df) {
 p<-ggplot(df, aes(x=x,y=y,fill=value)) +
 geom_tile() +
 scale_y_continuous(breaks = seq(0, 48, 1), limits = c(0, 48.5), minor_breaks =
NULL) +
 scale_x_continuous(breaks = seq(0, 48, 1), limits = c(0, 48.5), minor_breaks =
NULL) +
 coord_equal() +
 scale_fill_viridis_c() +
 theme_minimal() +
 theme(axis.title = element_blank(),
 axis.text = element_blank(),
 legend.position = "none")
 p<-ggplotly(p)
 return(p)
}

plot_df_ghi <- function(df) {
 p<-ggplot(df, aes(x=x,y=y,fill=ghi)) +
 geom_tile() +
 scale_y_continuous(breaks = seq(0, 48, 1), limits = c(0, 48.5), minor_breaks =
NULL) +
 scale_x_continuous(breaks = seq(0, 48, 1), limits = c(0, 48.5), minor_breaks =
NULL) +
 coord_equal() +
 scale_fill_viridis_c() +
 theme_minimal() +
 theme(axis.title = element_blank(),
 axis.text = element_blank(),
 legend.position = "none")
 p<-ggplotly(p)
 return(p)
}

make_df <- function(mat, val) {
 df <- which(mat == val, arr.ind = TRUE) %>%
 as.data.frame() %>%
 transmute(y = row, x = col)
 return(df)
}

make_df_full <- function(mat) {
 df <- setNames(melt(mat), c('y', 'x', 'value'))
}

make_mat <- function(df, val_col, img_w=48, img_h=48) {
 mat <- matrix(0, img_w, img_h)
 for(i in 1:nrow(df)) {
 row = df[i,]
 coord = as.numeric(row[1:2])
 value = row[[val_col]]
 mat[coord[1], coord[2]] <- value
 }
 return(mat)
}

simulate_density <- function(store_layout, agent_list, coeff=0.1, plot=FALSE,
name="density_plot", img_w=48, img_h=48) {
 density_mat = matrix(0, img_w, img_h)

2020024

Page 29 of 34

 walls_mat = store_layout[["walls_mat"]]
 cashier_in_mat = store_layout[["cashier_in_mat"]]
 cashier_out_mat = store_layout[["cashier_out_mat"]]

 walls_cashier_in = walls_mat + cashier_out_mat
 walls_cashier_out = walls_mat + cashier_in_mat

 for(i in 1:length(agent_list)) {
 current_agent <- agent_list[[i]]
 # Route btw first two targets (entrance to target 1)
 n_routes <- length(current_agent) - 1
 for(j in 1:n_routes) {

source = current_agent[[j]]
target = current_agent[[j+1]]
if(j == 2) {mg <- SearchMaze2D$new(walls_cashier_in, density_mat, coeff)} else

if(j == 3) {mg <- SearchMaze2D$new(walls_cashier_out, density_mat, coeff)} else {mg <-
SearchMaze2D$new(walls_mat, density_mat, coeff)}

current_path <- mg$run(source, target)
 if (is.null(current_path)) {

current_path <- mg$run(target, source)
}
for(k in current_path) {
density_mat[k[1], k[2]] <- density_mat[k[1], k[2]] + 1

}
if(plot==TRUE) {
file_name = paste(name,"_", i, "_", j, ".png", sep="")
density_df = make_df_full(density_mat)
walls_df = make_df(walls_mat, 1)
p <- ggplot(density_df, aes(x=x,y=y,fill=value)) +
geom_tile() +
geom_tile(data=walls_df, fill="#FFFFFF") +
scale_y_continuous(breaks = seq(0, 48, 1), limits = c(0, 48.5), minor_breaks

= NULL) +
scale_x_continuous(breaks = seq(0, 48, 1), limits = c(0, 48.5), minor_breaks

= NULL) +
coord_equal() +
scale_fill_viridis_c() +
theme_minimal() +
theme(axis.title = element_blank(),

axis.text = element_blank(),
legend.position = "none")

ggsave(plot=p, filename=file_name, width=1, height=1, units="in", dpi=150,
device="png")

}
 }
 print(paste("Agent",i,"simulated..."))
 }
 return(density_mat)
}

get_monetary_loss <- function(row, item_df, total_ghi, n_agents) {
 coord = row[1:2]
 density = row[3]
 value_lost<-0
 if(density == 0) {return(value_lost)}
 adj<-c()
 for(i in 1:-1)
 for(j in 1:-1)

if(i!=0 || j !=0)
adj<-rbind(adj,coord+c(i,j))

 for(i in 1:nrow(adj)) {
 if(adj[i,1]==0 | adj[i,2]==0 | adj[i,1]>48 | adj[i,2]>48) {next}
 if(item_df[which(item_df$y==adj[i,1] & item_df$x==adj[i,2]),3]==0) {next} else {

item <- item_df[which(item_df$y==adj[i,1] & item_df$x==adj[i,2]),3:7]
 }
 e_sold = n_agents * (item$ghi / total_ghi)
 e_left = item$qty - e_sold
 if (e_left >= 0) {

avg_remaining = (item$qty + e_left)/2
integrated_qty = 1/2 * (item$qty-e_left) + e_left

2020024

Page 30 of 34

 } else {
time_sold_out = item$qty/e_sold
integrated_qty = 1/2 * item$qty * time_sold_out

 }
 value_lost = value_lost + (density^2/100000) * item$discounted_price * item$frag *
integrated_qty
 }
 return(as.numeric(value_lost))
}

Some loss functions
get_loss <- function(densities) {
 loss = sum(densities)
 return(loss)
}

get_loss_sqrt <- function(densities) {
 loss = sum(sqrt(densities))
 return(loss)
}

get_loss_log <- function(densities) {
 loss = sum(log(densities+1))
 return(loss)
}

norm_loss <- function(loss, get_loss, worst_case) {
 loss_max = get_loss(worst_case)
 return(loss/loss_max)
}

get_loss_mat <- function(storedata, density_mat, target_df, n_agents) {
 density_df <- make_df_full(density_mat)

 item_mat <- make_mat(target_df, "value")
 item_df <- make_df_full(item_mat)
 item_df <- item_df[order(-item_df$value),]

 item_df$frag <- c(rev(storedata$frag), rep(0, nrow(item_df)-length(storedata$frag)))
 item_df$ghi <- c(rev(storedata$ghi), rep(0, nrow(item_df)-length(storedata$ghi)))
 item_df$discounted_price <- c(rev(storedata$discounted_price), rep(0, nrow(item_df)-
length(storedata$discounted_price)))
 item_df$qty <- c(rev(storedata$qty), rep(0, nrow(item_df)-length(storedata$qty)))

 total_ghi = sum(storedata$ghi)

 loss_mat <- matrix(0, nrow=48, ncol=48)
 loss_mat[] <- apply(density_df,1,get_monetary_loss, item_df=item_df,
total_ghi=total_ghi, n_agents=n_agents)
 return(loss_mat)
}

simulate <- function(pbm_path, store_layout = NULL, storedata, n_agents=100,
loss_fn=get_loss, max_routes=3, coeff=0.1, reps=5, plot=FALSE, name="density_plot",
from_bitmap=TRUE) {
 # This value is technically not necessarily the same for all agents, but we're
assuming it is
 print("Reading store layout from bitmap...")
 if(from_bitmap == TRUE) {
 store_layout <- read_img_map(pbm_path)
 } else {
 store_layout = store_layout
 }
 img_w = dim(store_layout$walls_mat)[1]
 img_h = dim(store_layout$walls_mat)[2]
 print("Store layout loaded.")

 print("Randomly generating agents...")
 agent_list <- create_agent_list(store_layout, n_agents)
 print("Running density simulation...")

2020024

Page 31 of 34

 density_mat <- simulate_density(store_layout, agent_list, coeff, plot, name, img_w,
img_h)
 print("Density simulation complete.")

 print("Computing estimated loss...")

 loss_mat <- get_loss_mat(storedata, density_mat, store_layout$target_df, n_agents)

 loss_df <- make_df_full(loss_mat)

 loss <- loss_fn(loss_df$value)

 print("Simulation completed successfully.")

 output = list(density_mat, loss_mat, loss)
 return(output)
}

plot_output <- function(output, filename) {
 results <- output[[2]]
 store_layout <- output[[1]]
 density_mat_avg <- matrix(0, 48, 48)
 loss_mat_avg <- matrix(0,48,48)
 loss <- c()
 for(i in 1:length(results)) {
 density_mat_avg <- density_mat_avg + results[[i]][[1]]
 loss_mat_avg <- loss_mat_avg + results[[i]][[2]]
 loss <- c(loss, results[[i]][[3]])
 }
 loss_avg <- mean(loss)
 loss_sd <- sd(loss)
 density_mat_avg <- density_mat_avg/length(results)
 loss_mat_avg <- loss_mat_avg/length(results)

 density_df_avg <- make_df_full(density_mat_avg)
 loss_df_avg <- make_df_full(loss_mat_avg)

 walls_df <- make_df(store_layout$walls_mat, 1)
 entrance_df <- make_df(store_layout$entrance_mat, 1)
 exit_df <- make_df(store_layout$exit_mat, 1)
 target_df <- store_layout$target_df

 p1<-ggplot(walls_df, aes(x=x, y=y)) +
 geom_rect(xmin=0.5,xmax=48.5,ymin=0.5,ymax=48.5, fill="#000000") +
 geom_tile(data=walls_df, fill="#FFFFFF") +
 geom_tile(data=entrance_df, fill="#FF0000") +
 geom_tile(data=exit_df, fill="#0000FF") +
 geom_tile(data=target_df, aes(fill=ghi)) +
 scale_y_continuous(breaks = seq(0, 48, 4), limits = c(0, 48.5), minor_breaks =
NULL) +
 scale_x_continuous(breaks = seq(0, 48, 4), limits = c(0, 48.5), minor_breaks =
NULL) +
 coord_equal() +
 theme_minimal() +
 scale_fill_distiller(palette="Spectral") +
 theme(axis.title = element_blank(),

axis.text = element_blank()) +
 labs(fill="GHI", title = "Store Layout")
 ggsave(plot=p1, filename=paste(filename,"_layout.svg",sep=""), width=5, height=5,
units="in", dpi=300, device="svg")

 p2<-ggplot(density_df_avg, aes(x=x, y=y, fill=value)) +
 geom_tile() +
 geom_tile(data=walls_df, fill="#FFFFFF") +
 geom_tile(data=entrance_df, fill="#FF0000") +
 geom_tile(data=exit_df, fill="#0000FF") +
 scale_y_continuous(breaks = seq(0, 48, 4), limits = c(0, 48.5), minor_breaks =
NULL) +
 scale_x_continuous(breaks = seq(0, 48, 4), limits = c(0, 48.5), minor_breaks =
NULL) +

2020024

Page 32 of 34

 coord_equal() +
 theme_minimal() +
 scale_fill_viridis_c() +
 theme(axis.title = element_blank(),
 axis.text = element_blank()) +
 labs(fill="Density", title = "Pedestrian Density")
 ggsave(plot=p2, filename=paste(filename,"_density.svg",sep=""), width=5, height=5,
units="in", dpi=300, device="svg")

 p3<-ggplot(loss_df_avg, aes(x=x, y=y, fill=value)) +
 geom_tile() +
 geom_tile(data=walls_df, fill="#FFFFFF") +
 geom_tile(data=entrance_df, fill="#FF0000") +
 geom_tile(data=exit_df, fill="#0000FF") +
 scale_y_continuous(breaks = seq(0, 48, 4), limits = c(0, 48.5), minor_breaks =
NULL) +
 scale_x_continuous(breaks = seq(0, 48, 4), limits = c(0, 48.5), minor_breaks =
NULL) +
 coord_equal() +
 theme_minimal() +
 scale_fill_viridis_c() +
 theme(axis.title = element_blank(),
 axis.text = element_blank()) +
 labs(fill="Loss", title = paste("Mean Loss =",round(loss_avg, 2),"SD
=",round(loss_sd,2)))
 ggsave(plot=p3, filename=paste(filename,"_loss.svg",sep=""), width=5, height=5,
units="in", dpi=300, device="svg")

 plots <- list(p1, p2, p3)
 return(plots)
}

9.1.4 Item Placement
source('simulate.R',local=T)
Get the store_layout for editing
store_layout <- read_img_map("example.pbm")

Core place_items function; no need to edit this code
place_items <- function(store_layout, storedata,select_positions,
order_positions, order_items,threshold,x,y) {
 #differentiate and sort prominent and normal items
 prominent_items<-storedata[which(storedata$ghi>=threshold),]
 prominent_items<-prominent_items[order(prominent_items$ghi),]
 normal_items<-storedata[which(storedata$ghi<threshold),]
 normal_items<-order_items(normal_items)
 #create the sorted layout
 storedata_sorted<-rbind(prominent_items,normal_items)
 #import layouts
 walls_mat <- store_layout$walls_mat
 blocked_mat <- store_layout$blocked_mat
 shelf_mat <- walls_mat-blocked_mat
 # Zero out the entrance wall
 # Convert the available spots into df format for sampling
 shelf_df <- make_df(shelf_mat, 1)
 # Select 134 shelf positions from possible positions
 shelf_positions <- select_positions(shelf_df)
 # Insert an item into each shelf position
 ## Sort positions by increasing y position
 shelf_positions<-order_positions(shelf_positions,x,y)
 ## Bind positions to items
 shelf_positions$value <- storedata_sorted$item_id
 shelf_positions$ghi <- storedata_sorted$ghi
 shelf_positions <- shelf_positions[order(shelf_positions$value),]
 store_layout$target_df<-shelf_positions
 return(store_layout)
}

2020024

Page 33 of 34

Some example selection/ordering functions (you'll have to write more of
these yourself)

A select_position function takes in a shelf_df, and selects 134 positions
from it somehow
select_positions_random <- function(shelf_df) {
 shelf_positions <- shelf_df[sample(nrow(shelf_df), 134),]
 return(shelf_positions)
}

select_positions_adaptive <- function(shelf_df){
 decay<-5
 items<-134
 tally<-0
 shelf_positions<-NULL
 for (i in 1:48){
 n<-48-i
 s<-shelf_df[which(shelfdf$y==n),]
 shelf_temp<-s$x%%decay==0
 tally<-tally+nrow(shelf_temp)
 if ((items-tally<items/10)&(decay>1)){

decay=decay-1
tally=0

 }
 items=items-nrow(shelf_temp)
 shelf_positions<-cbind(shelf_positions,shelf_temp)
 }
 return(shelf_positions)
}

select_positions_static<-function(shelf_df){
 shelf_df<-shelf_df[order(shelf_df$x),]
 shelf_df<-shelf_df[order(shelf_df$y),]
 shelf_positions = shelf_df[seq(1, nrow(shelf_df),
floor(nrow(shelf_df)/134)),]
 return(shelf_positions)
}

An order_position function takes in a shelf_positions df with 134 rows, and
orders them somehow
order_positions_ascending_y <- function(shelf_positions) {
 shelf_positions<-shelf_positions[order(shelf_positions$y),]
 return(shelf_positions)
}

order_positions_descending_y <- function(shelf_positions) {
 shelf_positions<-shelf_positions[order(-shelf_positions$y),]
 return(shelf_positions)
}

order_positions_euclidean<-function(shelf_positions,x,y){
 shelf_positions$euclidean<-(shelf_positions$x-x)^2+(shelf_positions$y-y)^2
 shelf_positions<-shelf_positions[order(-shelf_positions$euclidean),]
 shelf_positions$euclidean<-NULL
 return(shelf_positions)
}
An order_items function sorts store_data based on some attribute (e.g. ghi,
fragility, wtvr else)
order_items_ascending_ghi <- function(storedata) {
 storedata_sorted<-storedata[order(storedata$ghi),]
 storedata_sorted<-storedata[order(storedata$dpmt),]
 return(storedata_sorted)

2020024

Page 34 of 34

}

order_items_random <- function(storedata) {
 storedata_sorted <- storedata[sample(storedata$item_id),]
 storedata_sorted<-storedata[order(storedata$dpmt),]
}

