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Summary 

Flash sales are increasingly becoming the norm for brick-and-mortar stores, mainly in an 
effort to redirect sales away from online stores. These strategies cause surges of shoppers 
during these sales, resulting in many accidents that both damage products and injure 
people as they rush to purchase their target goods. The importance of store layouts to 
minimize the degree of such damage in stores has thus emerged, like in this problem. 

For our model, we sought to minimise the financial losses to the store from these item 
damages, referred to as the total loss, the dependent variable. We first identified the 
main factors in the surge of shoppers: the positions of the most desirable goods, the 
cashiers, and the presence of bottlenecking physical elements. The desirability of the goods 
was assessed based on an index coined the Gross Happiness Index (GHI), which took 
into account discounts, consumer rating and quantity remaining of each product. This 
formed the basis of our model's functionality. 

The layouts were converted into a 48x48 matrix to simplify computations, with each tile 
representing a 1m by 1m square.  

We then explored various ways in which consumers may damage items, such as knocking 
them out of their shelves, fighting for the last remaining stocks and walking through the 
crowd with the items. We realised that these were all related to shopper density in the 
store. We thus derived a formula relating shopper density, item fragility, number 
of unsold goods and the discounted price of the item to obtain the monetary loss 
of one tile resulting from the damage of items. The sum of monetary loss of all the tiles 
in the store was taken as the total loss. 

To simulate the passage of shoppers through the various layouts, we used the a* 
pathfinding algorithm to construct an agent-based model. The likelihood of a good being 
the desired good of each shopper was based on the GHI of the good. Each agent, 
representing an individual shopper, would go from the entrance to the shelf with the 
desired good, the cashiers, and finally the exit. The various paths were then merged onto 
one matrix to find the shopper density per tile and thus the total monetary loss.  

A modular function was created to test large numbers of different item arrangements to 
arrive at the optimum item arrangement based on GHI, which was determined to be one 
with decreasing GHI from the cashier. The optimum “prominence” threshold (0.9), 
which indicated the range of popular goods which should be displayed separately from 
their department to minimise total loss, was also obtained.  

Different floor plans were tested using these metrics. The optimal item arrangement 
from above was used in different layouts hand-created by the team. Without changing 
the size and shapes of shelves given, an optimal layout was found. However, given liberty 
to modify shelves completely, the grid layout format was then determined as the most 
optimal layout type and variants of it were tested to select the optimum layout which 
minimised total loss. 
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 Introduction 

Black Friday is an annual tradition that has been held in the US for decades (Pruitt, 
2015). Held the day after Thanksgiving, the holiday sees retailers slashing prices on many 
products in a bid to turn a profit. Consequently, many Americans hit the shops on Black 
Friday every year, with 135.8 million Americans indicating that they would spend the 
day shopping in 2015 (Pruitt, 2015). However, this rush for goods has resulted in many 
accidents, injuring over 100 people from 2006 to 2018 (Crockett, 2019). Not only has this 
resulted in injuries, but it has also resulted in the damage of many consumer goods, either 
due to shoppers knocking over goods through carelessness or through consumers fighting 
over them (Katz, 2019). Due to shoppers rushing to obtain a particular good and 
scrambling to pay for it so as to save time to buy more goods from other retailers, 
stampedes may even occur, causing injuries and damage to goods. Thus, Black Friday has 
caused many producers to suffer losses instead of turning over profits. 

Furthermore, in this digital age, more and more consumers are turning to online shops 
like Amazon instead due to reasons such as convenience. As a result, more brick-and-
mortar shops are implementing flash sales in a bid to attract customers to purchase from 
them instead of from online department stores, increasing the risk of suffering losses due 
to damaged goods as a result of an uncontrollable influx of consumers. 

Therefore, it has become increasingly essential to manage such instances of ‘human traffic’ 
so as to ensure that the endangered brick-and-mortar shops can achieve the intended 
effect of turning a profit rather than suffering losses. The model developed by our team 
aids this by manipulating store layout and product distribution to redirect shoppers in a 
manner as to reduce the number of accidents. 

Although similar studies have been done in the past where methods like Dijkstra’s 
algorithm and Bellman-Ford’s algorithm were used to find the shortest path to obtain 
goods in a store (Dela Cruz et al., 2016), the model developed by our team uses a novel 
method as it involves manipulating both the store layout and the customer path, which 
enhances its effectiveness. 

 Model 

4.1 Operationalization of Consumer Preferences 
Examining the store data provided, we identified the discount offered, consumer rating, 
and quantity available as factors likely to affect consumer preferences toward an item. 

4.1.1 Discount offered 
A consumer’s perception of the “value” of a discount is based on two factors: the absolute 
monetary value of the discount (i.e. price −  discounted price ) and the percentage 
discount (i.e. price–discounted price

price × 100% ). Intuitively, as the discount amount and 
percentage discount increases, the consumers' perceived gain from purchasing that good 
would increase as they save more money from the original price. We hence “double-count” 
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the discount in our modelling of consumer preferences by taking into account both 
discount amount and percentage—this is necessary to reflect consumers’ tendency to place 
more significant weightage on the extent of the discount offered than other factors in the 
context of a flash sale situation. This is corroborated by Fam et al. (2019) who found that 
'discounts and coupons are the two most highly ranked SP (sales promotion methods) 
across the sampled countries' in their study. 

4.1.2 Consumer rating 
Consumer rating is taken as a baseline measure of product attractiveness, which represents 
how consumers see an item regardless of whether it is on sale. Accordingly, consumers are 
more likely to buy a more highly rated item. 

4.1.3 Quantity available 
Conversely, the lower the quantity of an item offered, the higher its perceived rarity. As 
consumers are more likely to perceive their purchase as a better deal if they are among 
the few able to get the item, goods with a lower stock will be more attractive to consumers. 
This is a valid relationship. In fact, this is why many consumers are willing to queue up 
for hours in harsh conditions just to purchase limited edition products from US brand 
Supreme (Clifton, 2016). 

4.1.4 Gross Happiness Index (GHI) 
Taking into account all three factors above, we defined a Gross Happiness Index (GHI), 
a measure of the total pleasure or utility derived by consumers from successfully 
purchasing one unit of a given product. GHI was calculated with the following formula: 

GHI(item) = amount discounted × percentage discount × consumer rating
quantity available

To verify that our operationalization is reasonable, we examined the GHI of a number of 
items in the provided dataset. The most popular goods were the 5.3cu ft Slide-In Electric 
Range, Stainless Steel (GHI = 212), the 30” Combination Double Electric Convection 
Wall Oven with Built-In Microwave (GHI = 330), and the 24.7cu ft French Door 
Refrigerator, Black Stainless Steel (GHI = 398). 

This index could alternatively be interpreted as the relative desirability of an item—as 
such, we calculated the probability that someone will aim to buy a specific item as: 

P(buying	a	particular	item) = GHI(of	that	item)
∑ GHI

4.2 Encoding Schema for Store Layout 
4.2.1 Fundamentals 

In order to run a simulation of customer behaviour in a store, we had to encode its layout 
and item positions in a format which can be interacted with programmatically. As the 
problem statement provides us with a 48m × 48m floor plan, we chose to use a 48x48 grid 
as the environment for our simulation, where each grid unit had dimensions of 1m by 1m. 
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In order to faithfully recreate the given store layout, we extracted the original image and 
converted the picture to black and white, removing all annotations and arrows. We then 
downscaled the image to a 48x48 pixel bitmap (.pbm) and inverted the colours. This 
process is shown in Figure 1. 

With reference to Figure 1, the leftmost image is the original given image of the layout, 
the centre image is the image in black and white, and the rightmost image is the image 
converted to a bitmap. 

4.2.2 Layout components 
Hereafter, we refer to each pixel in the bitmap as a tile, representing a 1x1m area of the 
store. 8 different tile types were identified, and each assigned a unique colour. Our final 
encoding scheme for a store’s layout is displayed below: 

With reference to Figure 2, traversable spaces refer to the black tiles. These are the areas 
where shoppers can move. They include empty spaces and corridors between shelves. The 
shelves are illustrated as the white tiles where items are placed, and the walls are the 
purple tiles. They are just walls to divide/block shoppers from passing through, and no 
items will be placed on them. We made this distinction as large items like those listed in 
the provided spreadsheet (e.g. 85” TVs) are rarely placed along cashier queues or other 

Figure 1: An illustration of the process described above. 

Figure 2: a legend of the tile colours in the bitmap 
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inconvenient locations. This also provides us with a utility to manually influence the 
placement of items—though this was generally performed programmatically, as will be 
elaborated upon later. Cashiers are illustrated as blue tiles, where people make their 
payments. The cashier entrance is illustrated by the maroon tiles, and the cashier exit is 
illustrated by the dark blue tiles. This allows us to optionally indicate where a queue for 
a cashier will start and end. The rationale for needing to define queues in this manner 
explicitly will also be elaborated upon further in later parts of the report. Finally, the 
entrance and exit to the store are the bright red and bright blue tiles respectively. 

4.2.3 Data representation 
Our custom simulation software imports a bitmap of a store layout via the function 
read_img_map(), separating each set of tiles of a given colour into its own 48x48 matrix, 
as shown in Figure 3. By primarily dealing with the store’s layout as a set of matrices, 
most computations in our simulation are reduced to matrix operations, maximizing 
efficiency and minimizing simulation runtime. This is especially important due to the 
large number of layouts which need to be tested. 

4.3 Simulating Consumer Behaviour 
4.3.1 Behavioural Assumptions 

A number of assumptions about shopper behaviour were made, which informed the design 
of our models and simulation. 

4.3.1.1 Assumptions with regard to desired items 
Firstly, we assumed that consumers desired only one good and knew what the desired 
good was before entering the store. This also meant that the consumers did not impulse 
buy goods other than the originally desired good. This is not an unreasonable assumption, 
given that considering how crowded retail stores can be during retail sales, consumers will 
often strategise to target a specific item of interest, and rarely stick around after 
purchasing their desired good. This was a necessary assumption in simplifying the 
movement of the agents towards the desired shelf. 

Secondly, it was assumed that the shoppers have no prior knowledge of the item positions 

Figure 3: Internal matrices 
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in the store. This is a valid assumption, considering that the store’s layout is changed just 
before the flash sale begins. Hence, this meant that the shoppers needed to perform a 
search through the store to find their desired item. We used a*star search as an 
approximation of human pathfinding. 

Thirdly, we assumed that consumers do not know if the good that they wanted was already 
out of stock before they entered the store. Even if a particular good is already out of stock, 
consumers would still make their way towards the particular aisle. This is also a valid 
assumption—this is the underlying reason why fights occur in the first place, as shoppers 
try to snatch goods from other people. This was a necessary assumption because it allowed 
us to simplify the code involved in modelling the behaviour of the agents. 

4.3.1.2 Assumptions with regard to other shoppers 
As shoppers have physical volume, they are unlikely to fit into the same region of space. 
This phenomenon is responsible for congestion and jam formation as shoppers try to 
squeeze past each other while moving through corridors, entrances and exits, drastically 
slowing movement in those areas. Hence, shoppers would, as far as possible, avoid these 
regions of congestion so as to get to their desired items quickly. This was a necessary 
assumption because it improves the accuracy of the model by more realistically simulating 
the behaviour of shoppers in real life. 

4.3.1.3 Assumptions with regard to item damage 
One final assumption is that the frequency of accidents and fights between consumers is 
assumed to follow a power law with respect to the density of people. This is because the 
more packed a particular walkway is, the more likely that shoppers would accidentally 
knock over a particular good due to carelessness. Moreover, the more crowded a particular 
aisle is, the more people there would be fighting over a particular good, hence the higher 
the frequency of fights occurring. These probabilities would only start increasing in 
extremely packed situations, because in moderately packed situations the likelihood of 
these accidents is still reasonably low—for example, if only 10 people walked past an item 
a day, the probability of an accident is negligible. Without a doubt, the frequency of fights 
is also dependent on factors like the temperament and personalities of the shoppers. 
However, it was not possible to take into consideration these subjective factors when 
designing the model; besides, as the model intends to estimate the average loss, these 
variables are unlikely to affect the final estimated loss in any case drastically. 

4.3.2 Simulation Principles 
4.3.2.1 Fundamentals 
We adopted an agent-based approach for behavioural simulation, with parameters chosen 
so that each agent roughly represented 10 real-world shoppers. Each agent followed a 
simple set of rules based on the aforementioned assumptions of shopper behaviour, as 
described below: 

4.3.2.2 In-store Pathfinding 
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Each agent was initialized with a stored list of target coordinates to a specified entrance 
tile, desired item tile, cashier tile, and exit tile. The likelihood of a good being selected as 
the desired item was based on its GHI, as described above, while specific entrance, cashier, 
and exit tiles were selected from their respective matrices with equal likelihood. 

Agents travelled between these tiles in a set sequence (i.e. entrance→target 
item→cashier→exit), with routes between the tiles calculated via the a* pathfinding 
algorithm. Briefly, a* is a graph traversal algorithm which performs a heuristic search for 
the shortest path between nodes. It saves time by only checking a limited set of adjacent 
nodes (the “open set”) to the current node at each step: for each of these nodes, it 
estimates the total path cost by summing the distance travelled to that node and the 
expected remaining distance to the target, as calculated by a distance heuristic (in this 
case, the Euclidean distance between a node and the target node), then designating the 
node with the lowest total path cost as the new current node. 

We chose a* search as it is a better approximation of a human search for the shortest 
path (where we are limited by possible paths within our lines of sight) and time-optimality 
compared to other search algorithms, such as Dijkstra’s or Bellman-Ford. 

4.3.3 Crowd Avoidance 
This process also meant that individual agents did not interact in a shared world every 
simulation tick; instead, interactions were iteratively computed between agents’ complete 
paths through the shop, making the model “approximate”. 

To compute these “interactions”, a shared density matrix was instantiated, and the 
drawing of paths commenced. Every time an individual path included a tile, that tile’s 
density was incremented by 1. As previously assumed, people seek out areas of lower 
pedestrian density while searching for a path through an environment. Therefore, we 
defined an avoidance coefficient (A) based on the density in a tile. We used this coefficient 
to increase the distance to tiles with higher densities. For example, the distance to an 
adjacent tile of 0 density is simply the Euclidean distance (1), but the distance to an 
adjacent tile of density 1 would be the Euclidean distance +  density ×  A, which would 
be (1+A). Hence, this coefficient has the effect of artificially increasing the distance 
travelled in more crowded routes, so that the agents would avoid them and take less 
crowded paths instead. We used A=0.1 for all our simulations. While the avoidance 
coefficient was arbitrarily determined, it does have a physical meaning—the value chosen 
means that an agent density of 10 at a tile would make it twice as difficult to get to that 
tile. 

4.4 Estimating Monetary Loss 
4.4.1 Causes 

There are various ways consumers may damage goods during flash sales. As crowds of 
shoppers are pushed along the store in an effort to rush to their purchases, some shoppers 
may be pushed towards the shelves to knock down small products on the shelves, 
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damaging them. Larger products placed on the floor may also be knocked down or 
squashed between crowds to be damaged.  

Products may also be damaged during the shoppers’ efforts to acquire them. Removing 
goods from the shelves in the middle of such a crowd would be difficult and may result in 
the goods being dropped onto the floor. Fights may also occur between shoppers as they 
try to acquire the limited stock of goods, pulling on the goods and damaging them.  

After the shoppers acquire the good, the good may be damaged as they try to wedge out 
of the crowd, squeezing against the good. Shoppers holding large products are especially 
prone to this as they may lose balance, injuring themselves and damaging the product. 

Furthermore, in a sale situation where desirable goods are in limited quantity, fights may 
occur due to multiple consumers believing that they have the right to buy a particular 
unit. This can further cause damage to units being fought over as they may be roughly 
handled during a scuffle. In addition, if a fight were to break out amongst cramped shelves, 
the products on the shelves may be knocked off, causing damage.  

Evidently, the above cases are more likely to occur as there are more shoppers, represented 
by a higher human density. As stated above, the frequency of cases would only increase 
in extremely packed situations. Hence, the function for the amount of damage inflicted is 
nonlinear with respect to density, with the amount of damage taken to be proportional 
to the human density squared. 

Amount of damage inflicted = density2 

4.4.2 Factors Affecting Loss 
Thus, we assumed that the monetary loss for a tile was a function of the amount of 
damage inflicted in that tile and the properties of items placed nearby the tile.  

In all, the estimated loss due to the damage to an item from pedestrian density in a given 
tile was a function of the amount of damage inflicted, the item’s unit monetary value, a 
decay term taking into account the attractiveness and quantity of the item, and the item’s 
fragility.  

The unit monetary value was taken to be the discounted price, as it would be the amount 
of money received by the store if the good was undamaged. The decay term was taken 
into account because the quantity of an item remaining will decrease at a higher rate if it 
is more sought after. 

4.4.3 Item Fragility 
Fragile goods are more likely to be damaged to a more severe extent, resulting in more 
significant monetary losses. We defined a fragility index, FI, to represent the likelihood of 
an item being damaged in the store. This was calculated using real-life data of the 
percentage of the product damaged in shipping (Blumberg, 2005).  

FI(item)  =  % of items returned due to shipping damage ×  % of all items returned 
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FI can be understood as the probability that an item would be damaged as a result of 
being shipped once. Therefore, we need to relate the amount of damage inflicted due to 
pedestrian density to the “number of times shipped”. We make an educated guess that 
1000 people walking within 1 metre of an item on a busy day will cause an equivalent 
amount of damage to a product being shipped 10 times. We use this guess to define a 
constant, c, relating the arbitrarily defined amount of damage inflicted to our fragility 
index and “number of times shipped”: 

10002

𝑐 = 10 

𝑐 = 100000 

With this constant, we define a density index, DI, calculated: 

DI(tile) = density2

100000
4.4.4 Total Expected Loss 

The total monetary loss due to density at a particular tile was equal to the summation of 
monetary loss to items in the adjacent tiles.  

To find this monetary loss to items, we used the following formula: 

Monetary loss to item in adjacent tile 

=  (Di ×  Fi)  ×  discounted price of item ×  ∫ qty of item 
1

0
dt 

Where t is the proportion of the day passed. 

If items are still remaining after the sale,  

∫ qty of item 
1

0
dt =  remaining qty +  ½ (initial qty × (initial qty − remaining qty)) 

Where 

remaining qty =  item qty –  expected purchased qty 

And 

expected purchased qty =  P(item purchase) ×  number of agents 

If items are all bought,  

∫ qty of item 
1

0
dt =  ½ (initial qty ×  time sold out) 

Where 
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time sold out =  initial qty
expected purchased qty

With these operations, we could evaluate the total monetary loss per tile, which could be 
summed to obtain the estimated monetary loss over the entire store. Hence, we had an 
operation that maps a matrix of pedestrian density to a matrix of estimated monetary 
loss. 

4.5 Model Evaluation 
4.5.1 Validation Against Real-world Behaviour 

We found that our model could successfully simulate many observed pedestrian 
behaviours, including bottlenecking at tight corridors and jamming at intersections. An 
example with random item layout is shown below, demonstrating these characteristics. 

Figure 4: running our simulation on the given layout with randomised item arrangement 

With reference to Figure 4, the legend indicates that dark blue areas have the lowest 
agent density, followed by green areas and yellow areas. The green colour of the walkways 
along the cashiers shows the high density of agents in the narrow corridor, especially at 
the even narrower exit. Smaller spikes in human density can also be seen in the 
intersections of the walkways between shelves, as labelled by the red arrows in Figure 4. 

The simulation also produced results that matched intuitions about item positioning. As 
stated above, if popular items are placed near the entrance, exit, and cashier, the paths 
to obtain these goods would be shorter, resulting in the decrease of total population 
density from these paths and thus decreasing total loss. This is evidenced by Figure 5. 
The simulation was run twice: once for a layout where high GHI goods are placed near 
the entrance, exit and cashiers, and another time for a layout where low GHI goods are 
placed near the entrance, exit and cashiers. The results of the simulations are shown in 
Figure 5. 
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Figure 5: a comparison of simulations run for two different arrangements of goods. 

The left side of Figure 5 is the simulation run for the layout where goods with high GHI 
are placed close to the entrance, exit and cashiers, while the right side is the same results 
for the low GHI layout. The top half shows the arrangement of the goods with different 
GHIs, and the bottom half shows the monetary loss. As can be seen, the top left image 
shows that high GHI items (red) are placed close to the entrance, followed by low GHI 
items (blue) placed further away. The opposite is true for the top right figure. 
Consequently, the bottom left image shows that the average monetary loss for the layout 
where high GHI goods are placed close to the entrance is 17.99, and the average monetary 
loss for the low GHI layout is 24.6, which is considerably higher. 

Additionally, as we were trying to calculate a cumulative loss value, ultimately, the vast 
majority of time-varying behaviour did not benefit analysis and was computationally 
wasteful to simulate. For example, a simulation encompassing oscillation of passing 
direction at a bottleneck will average out to a diffuse region of high density around the 
bottleneck, producing the same result as our model. The model hence essentially simplified 
this process to save on computational power. 

4.5.2 Robustness 
However, since the simulation is iterative, results technically depend on agent order, 
though this effect likely diminishes with larger agent numbers. Furthermore, the item 
positions on each shelf were also randomized for each replicate, introducing further 
variance to the results of the model. This made the model stochastic as the results were 
heavily influences by random factors.  
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To account for this effect, we ran 10 replicates of each simulation each with randomized 
agent orders and item positions. This would have normalized the variations of the results 
stemming from the agent orders. Fortunately, this barely hindered computation, as the 
operation is fully parallelizable across multiple CPU cores. On top of this, we computed 
the standard deviation for the 10 replicates, allowing the comparison of preciseness 
between layouts and their corresponding item arrangements. The stochasticity was thus 
overcome to some degree, making the model robust.  

4.5.3 Limitations 
Despite the strengths of our model, every model has its limitations. 

Firstly, the fragility index formulated by our team may not be completely accurate. This 
is because the fragility index was calculated based on shipping data, provided by 
Blumberg (2005). The data provided statistics about the average percentage of a 
particular product type getting damaged in shipping. For instance, according to the book, 
on average, 2.36% of all desktop computers get damaged in shipping. This percentage was 
used as an indication of the fragility of the good since goods which are more likely to get 
damaged during shipping are likely more fragile. However, this data has two main 
shortcomings. Firstly, according to the book, on average, 2.232% of all televisions get 
damaged during shipping. However, this percentage does not make a distinction between 
different types and sizes of televisions, while the store inventory provided includes 
televisions with sizes ranging from 30 inches to 85 inches. Since the data provided does 
not make a distinction between them, they were all assumed to have the same fragility 
index. This is not entirely accurate, since size may play a part in affecting the fragility of 
the item.  

Another limitation of the data is that it does not include the statistics for certain goods. 
For instance, the average percentage of goods getting damaged in shipping was not 
provided for robot vacuums and gaming consoles, both of which appear in the store 
inventory. However, the data does provide such statistics for all consumer electronics and 
major appliances on average. Major appliances referred to necessities like refrigerators and 
washers, while consumer electronics generally referred to entertainment products like 
laptops and televisions. Hence, for items on the store inventory whose data was not 
provided, average data for all major appliances/consumer electronics had to be used, 
depending on the particular good. This could have resulted in inaccuracy since the actual 
average percentage of robot vacuums (for example) getting damaged in shipping may be 
different from the average percentage of all appliances getting damaged in shipping. 

These two limitations mentioned above can be mitigated by referring to a variety of 
sources in determining the fragility index. However, due to the short period available in 
coming up with the improved layout, there was insufficient time to carry out a meta-
review of real-life statistics. 
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Another limitation arises due to the inability of the layout/model in taking into account 
subjective factors. As mentioned above, the likelihood of damage also depends on the 
personalities of the customers, as short-tempered consumers are more likely to get into 
fights/arguments, which may lead to damaged goods. However, such subjective emotions 
cannot be modelled via mathematical means; thus, this is an inevitable limitation. 

One other limitation of the layout/model is that it does not take into account the different 
brands of the goods on sale. According to the store inventory provided, the items on sale 
are manufactured by different brands like Brand FF, Brand M, Brand W etc. The 
branding will likely have a significant impact on the gross happiness index (GHI) because 
consumers will likely derive more pleasure when they purchase a brand that is more 
famous and well known, which, as mentioned above, is why many consumers go after 
Supreme products (Clifton, 2016).However, the different types of branding were not taken 
into account in formulating the GHI, because of the simple reason that based on the brand 
names provided, the more popular brands could not be distinguished from the less popular 
brands, and the significance of branding could not be factored into the formula for the 
GHI. 

Model-guided Design 

5.1 Approaches 
5.1.1 Computational 

Using software to randomise the layout of the shelves was considered. However, doing so 
was determined to be extremely time-consuming. This was because the total number of 
shelves and checkout stations was 53. Even accounting for shelves with the same 
dimensions, the total number of ways to permute their physical locations in space was 
still an extremely large number (order of magnitude ~40). Furthermore, other than the 
location of the different shelves, other factors also came into play like whether the shelves 
are positioned horizontally, vertically or at various angles, further increasing the total 
number of ways to arrange them. Machine learning approaches—genetic algorithms and 
simulated annealing among them—were considered, but ultimately abandoned due to 
massive size of the search space. 

In the end, a modular function was created to allow for different organisational methods 
to be used for item placement within the space and item organisation based on GHI and 
fragility. The modularity of this function allowed for the addition differ 

5.1.2 Human-guided 
Thus, our team decided to manually design layouts which we deemed suitable for a flash 
sale, iterating upon them based on simulation results. This was possible as we were able 
to edit the layouts directly with an image editor rather than editing every value of the 
matrix, allowing for rapid creations of layouts. 

We researched a list of commonly used store layouts, such as the forced-path layout, the 
grid layout, the geometric layout etc. (“Retail Store Layout Design and Planning”, n.d.). 
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Some of these layouts were deemed to be not optimal for flash sales, as seen below. We 
decided that the grid layout was the best for flash sales and designed floor plans around 
this layout. The matrix model mentioned was then used to test which layout allowed for 
the lowest likelihood and extent of damage. 

The various layouts available for design are as follows: 

Forced-path layouts are the layouts widely used by Dutch furniture retail giant IKEA 
where consumers are forced to move through the entire store. Such a layout is not optimal 
for the flash sale since consumers generally have something they desire and would not 
want to waste time moving around the entire store. An example of a forced-path layout 
is shown in Figure 6. 

Figure 6: An example of a forced-path layout. Retrieved from "Retail Store Layout Design and Planning", n.d. 

Similarly, loop layouts, which force customers to go one entire loop around the store, are 
also not feasible for the same reason. 

Diagonal layouts where the shelves are arranged diagonally are also not optimal for flash 
sales, because arranging the shelves diagonally would result in narrower aisles which lead 
to an increased likelihood of damage. The given layout does include a row of diagonally 
arranged shelves. An example of such a layout is shown in Figure 7. 

Figure 7: An example of a diagonal layout. Retrieved from "Retail Store Layout Design and Planning", n.d. 
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Grid layouts were deemed to be optimal for flash sales because it allows for more efficient 
movement of customers and greater distance between shelves allowing for reduced 
likelihood of damage. The only downside of the grid layout is the lack of visual and 
aesthetic appeal. However, this is generally not a consideration during a flash sale. An 
example of a grid layout is shown in Figure 8. 

Figure 8: An example of a grid layout. Retrieved from "Retail Store Layout Design and Planning", n.d. 

Various grid layouts were designed based on the principle that the most popular items 
with the highest GHI should have the greatest spacing around them, so as to accommodate 
higher numbers of agents (shoppers) and hence minimize human density and thus item 
damage. 

5.2 Experiments (Note: in each experiment, the dependent variable was the 
monetary loss) 
5.2.1 Independent Variable: Item Placement in Original Layout 

In this section, the variable tested was the different methods of arranging items given 
their different GHIs on the default shelves provided. 

Our baseline was a random initialisation of the shelf and item positions on the original 
layout, which resulted in a loss of 17.83. Visualisations of the layout generated, pedestrian 
density, and loss are provided in Figure 9. 

: Maps of random item arrangement 
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Using the mathematical model, the shelves of products were rearranged to yield the lowest 
total loss. We refined this arrangement further to place the items with higher GHI closer 
to the cashier (in terms of Euclidean distance), and items with lowest GHI further away 
from the cashier. This further lowered the monetary loss to 11.69.  

Placing the high GHI goods closer to the cashier allowed the minimisation of total loss as 
the paths taken by the shoppers, which involved moving from the good to the cashiers, 
decreased in length. Thus, the total density contributed by these paths decreased, leading 
to the decrease in total density in the store and hence the decrease in total loss, which is 
visible when comparing  Figure 10 to Figure 9. 

Up to this point, item placement has not taken into consideration product category, as 
this factor is not taken into account in the agent pathfinding—that is, agents will find a 
path to an item just as easily, whether or not they are sorted into departments or not. Of 
course, actual shoppers would find it much easier to search for items according to category. 
Therefore, any practical store layout would only place a limited number of high GHI items 
in individual shelves, while all other items would be sorted by department for easier access. 

In our code, we accounted for this factor by determining a prominence threshold, P, 
representing the percentile of GHI above which we consider an item popular enough to 
be assigned its own display. First, items above that threshold were placed in positions 
closer to the cashier, in terms of decreasing GHI, regardless of category. Items were then 
assigned positions according to their category, with their distance from the cashier 
determined by the category’s average GHI. Positions of items within their own category 
area were further sorted by item GHI. An illustration of this sorting procedure is shown 
below: 

Prominence thresholds ranging from 0 to 0.9 were tested, with 0.9 being the optimal 
“prominence threshold” value, resulting in the lowest loss value of 11.2. A graph of loss 
against threshold is displayed in Figure 11.  
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Figure 11: Prominence against loss 

As seen in Figure 11, although a trend is observed, the large error bars indicate that it 
may not be significant. However, this is ideal as it indicates that sorting by department 
does not greatly affect the loss, allowing for easier identification by customers when they 
visit the store.  

5.2.2 New possible layouts 
5.2.2.1 Independent Variable: arrangement of shelves 
Many designs were made by rearranging the given shelves (without changing the 
dimensions), and testing was then done on the layouts. The algorithm for item 
arrangement followed that from section 4.2.1, with a prominence threshold value of 0.9 
and an arrangement of decreasing GHI from the cashier. 5 generated layouts and their 
associated loss values are presented below in Figure 12: 

The pedestrian heat-map of the final layout can be found in Figure 12. A spike in 
pedestrian density around the corner of the walls of the walkway and funnelling through 
the walkway can be seen. 
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A mean loss of 9.71 and a standard deviation of 0.74 was recorded as seen in the last map 
of Figure 13, the bottommost map, significantly lower than the mean loss of 11.69 of the 
original layout as shown in Figure 10. 

With reference to Figure 10, for the 
same item arrangement on the given 
layout, the monetary loss was 11.69. 
However, as can be seen in Figure 12, 
the monetary loss for the chosen final 
layout was only 9.71, which is 
objectively a lot lower than that of the 
given layout. This can be explained 
with various factors. Firstly, in the 
given layout, there is very little space 
in between each shelf, with most of the 
corridor widths being as narrow as 1 
metre. In contrast, with reference to 
Figure 12, there is at the very least a 2 
metre spacing between each shelf, with 
some spacings being as wide as 3 or 4 

metres. This helps to greatly reduce the human density around the items, which is 
especially important for the more fragile items. In addition, another main difference lies 
in the fact that in the original layout, there are not many paths which consumers can 
take. For instance, when consumers are trapped in between two long shelves, they only 
have two available paths, which results in a high human density. In contrast, with 
reference to Figure 12, as far as possible, the long shelves were alternated and interspersed 
with shorter shelves. This is so as to provide shoppers (agents) with as many available 
routes as possible so that they can disperse themselves (according to the avoidance 
coefficient as mentioned above), allowing for minimized human density around the items. 
These are two main reasons why our final layout proves superior to the given layout.  

5.2.2.2 Independent variable: Modifying the shelves (changing their 
dimensions) 

The following experiments / tests assume that the dimensions of the shelves can be 
changed and modified accordingly. A forced-path layout was attempted, shown below in 
Figure 14. However, this led to a high loss value of 51.49 as all customers were forced 

Figure 13: Pedestrian density heat-map of final layout 
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down the same route, increasing density. 

Figure 14: Forced-path layout 

As such, this was improved by adding shortcuts between sections of the forced path 
without any goods, allowing customers with goods nearer the end of the forced path to 
avoid taking the main path, alleviating some of the density there. The simulation result 
is as shown in This significantly reduced the loss value from 51.49 to 29.59. However, this 
was still higher than the default. From this, it was theorised that a larger open space 
would allow for lower loss value. Hence, the forced-path layout was confirmed to be 
unsuitable and a more open concept was developed.  

Figure 15: forced path layout with shortcut 

The final experiment involved modifying the dimensions of the shelves to the point where 
each shelf only housed one item. Doing so allowed for the maximum space between shelves. 
The layout and arrangement of items on the shelves, the pedestrian density, as well as 
the loss value can be found in Figure 16 
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Figure 16: item arrangements, pedestrian density, and loss value diagrams for the 'open' layout. 

With reference to Figure 16, it can be seen that for this layout, the shelves and items 
were arranged such that the items with high GHI were placed on shelves that were spread 
far apart, and items with low GHI were placed on shelves that were placed closer together. 
Thus, it prioritises minimizing human density around the shelves containing the high GHI 
goods. This strategy is shown to be highly effective, as evidenced by the pedestrian density 
simulation result, where most of the bitmap is dark blue in colour (low density). This is 
also evidenced by the mean loss result, where the mean monetary loss is only 5.4, the 
lowest result. Further iterations on this design were attempted, by selectively moving 
shelves with the highest loss, but no further improvements were achieved, indicating that 
this arrangement is close to the optimum possible. 

Conclusions 

The optimum item arrangement keeping the given layout is shown in Figure 5 (left side), 
with a loss of 17.99. 

These shelves can be shifted around (while keeping the dimensions) to form the optimum 
layout with a loss of 9.71, as shown in Figure 12. 

However, assuming modifying the dimensions of the shelves is allowed, it is possible to 
design a layout with even lower total loss of 5.4, as shown in Figure 16. 

6.1 Recommendations 
In this model, layouts were manually designed and tested using the simulation program. 
This was because testing each layout required considerable amounts of time; hence it was 
not feasible to use a randomizer program to come up with every possible layout 
combination and test every single one of them due to the sheer number of layout 
combinations. In future studies, given sufficient time and software resources, this approach 
can be made to make sure that the entire exhaustive list of possible layouts is tested, to 
come up with a definite optimum layout. 

Additionally, in future studies, with more time resources, a larger number of studies can 
be consolidated to obtain more comprehensive statistics, such as the % of a particular 
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good getting damaged in shipping. This would allow for a more accurate determination 
and refining of the fragility index. 

As mentioned above, due to the lack of reliable statistics, we also had to come up with a 
guess that 1000 people walking within 1 metre of an item on a busy day would cause the 
same amount of damage to the product as the product being shipped 10 times. In future 
studies, comprehensive analysis can be done on real-life customer behaviour, to more 
accurately determine how much damage would be done by 1000 customers walking within 
1 metre of an item in 1 day. This was not done in this paper due to a lack of reliable 
sources. In addition, in this paper, we assumed that the agents, like shoppers in real-life, 
would tend to avoid crowded routes and use less-crowded routes instead to get to their 
destination faster. However, the extent to which shoppers in real-life exhibit this 
behaviour is unknown. In other words, in real-life, the precise ‘threshold’ of human density 
at which shoppers begin to utilize alternative routes is not known. Hence, the avoidance 
coefficient developed by our team might have been too large or too small. In future studies, 
more comprehensive research on shopper behaviour can be conducted to come up with a 
more accurate avoidance coefficient. 

A similar issue was faced when coming up with the relationship between item damage 
and human density. As mentioned above, in this report, item damage was taken to be 
proportional to the square of the human density. Although it is a reasonable assumption 
that the amount of damage has a nonlinear relationship with density, the exact 
relationship is unknown. More analysis of consumer behaviour can be done in future 
studies to ensure the determination of a more accurate relationship. Nevertheless, the 
relationship between the amount of damage and human density can never be accurately 
determined, because as mentioned above, this is also influenced by subjective factors like 
the emotions and personalities of the shoppers. 
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Letter to Store Manager 

Dear Sir / Mdm, 

Thank you for your continuous support to our team. Attached is our proposed layout for 
the upcoming 2020 Flash Sale.  

After doing extensive research on the types of store layouts, we determined that the grid 
layout is the best choice for a flash sale. We determined that the factors affecting the 
popularity of a good are the customer rating, the discount amount, as well as the quantity 
of the good available. We took these into account to calculate the Gross Happiness Index 
(GHI), which measures the popularity of the good and hence the likelihood of the good 
being purchased by shoppers. 

Armed with the above knowledge, our team tirelessly designed many grid layouts for the 
store. In designing these layouts, we followed various guidelines which we believed would 
lead to the lowest amount of damage to the items. For instance, shelves were arranged as 
spaciously as possible to minimize human density; we placed the checkout area close to 
the exit to ensure that the customers who have paid for their goods would leave efficiently 
and not obstruct those who have not purchased their goods; and finally, based on the 
GHI of the goods, we arranged the goods in such a way that would lead to the least overall 
monetary loss. 

We then built a computer program to test the layouts that we had designed. The program 
simulated the different routes that the shoppers would be able to take for the different 
layouts. The agents in the model simulate the behaviour of shoppers in real-life, such as 
how shoppers would avoid more crowded paths and utilize longer, but less crowded paths 
to reach their destination more quickly. We also managed to obtain data from reliable 
published sources to calculate the fragility of the different goods on sale. Thus, the final 
layout you see is the one that has come out on top through all the rounds of rigorous 
testing. This layout allows for the lowest human density around the most fragile and 
expensive items, reducing the overall expected monetary loss.  

However, do note that our floor plan cannot prevent fights between shoppers, as this 
depends entirely on the personalities of the shoppers. Hence, please consider hiring 
security guards and installing security cameras or warning signs in the store to deter fights 
between shoppers. 

We wish you the best of luck with your event. 

Most Sincerely, The IMMC team 



2020024 

Page 26 of 34 

Appendix 

9.1 Code 
9.1.1 Release of Code & Data 

9.1.2 Image Processing 
read_img_map <- function(img_path, targets_encoded=FALSE) { 
  img <- read.pnm(img_path) 

  #ffffff = Walls (all non-traversable tiles, including shelves and walls) 
  green_minus_target = img@green 
  green_minus_target[which(green_minus_target != 0)] <- 1 
  walls_mat <- img@red + green_minus_target + img@blue 
  walls_mat[which(walls_mat != 3)] <- 0 
  walls_mat <- walls_mat/3 

  #cc00cc = Blocked walls (walls where items cannot be placed) 
  blocked_mat <- img@red + img@blue + img@green 
  blocked_mat[which(blocked_mat!=1.6)]<-0 
  blocked_mat <- blocked_mat / 1.6 

  walls_mat <- blocked_mat+walls_mat 

  #00ffff = Cashiers (for now, the second target for all agents) 
  cashier_mat <- img@green + img@blue + img@red 
  cashier_mat[which(cashier_mat != 2)] <- 0 
  cashier_mat <- cashier_mat/2 

  #330000 = Cashier inlet (for supporting queueing behaviour) 
  cashier_in_mat <- img@red 
  cashier_in_mat[which(cashier_in_mat!=0.2)] <- 0 
  cashier_in_mat <- cashier_in_mat * 5 

  #000033 = Cashier outlet (for supporting queueing behaviour) 
  cashier_out_mat <- img@blue 
  cashier_out_mat[which(cashier_out_mat!=0.2)] <- 0 
  cashier_out_mat <- cashier_out_mat * 5 

  #ff0000 = Entrances (possible source points) 
  entrance_mat <- img@red 
  entrance_mat[which(entrance_mat!=1)] <- 0 
  entrance_mat = entrance_mat - walls_mat + blocked_mat 

  #0000ff = Exits (final target for all agents) 
  exit_mat <- img@blue 
  exit_mat[which(exit_mat!=1)] <- 0 
  exit_mat = exit_mat - walls_mat - cashier_mat + blocked_mat 

  #00xx00 = Target objects (for now, the first target for all agents) 
  # convert back to 0-255 encoding 
  if(targets_encoded == TRUE) { 
    target_mat <- img@green*255 
    target_mat[which(target_mat == 255)] <- 0 
    target_df <- make_df_full(target_mat) 
    target_df <- target_df[which(target_df$value != 0),] 
    target_df$value = 255 - target_df$value 
    target_df <- target_df[order(target_df$value),] 
    target_df$ghi <- storedata$ghi 
  } else { 
    target_df <- NULL 
  } 

  store_layout <- list("walls_mat" = walls_mat, "blocked_mat" = blocked_mat, 
"cashier_mat" = cashier_mat, "cashier_in_mat" = cashier_in_mat, "cashier_out_mat" = 
cashier_out_mat, "entrance_mat" = entrance_mat, "exit_mat" = exit_mat, "target_df" = 
target_df) 
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  return(store_layout) 
} 

create_agent_list <- function(store_layout, n_agents) { 
  walls_df <- make_df(store_layout[["walls_mat"]], 1) 
  cashier_df <- make_df(store_layout[["cashier_mat"]], 1) 
  entrance_df <- make_df(store_layout[["entrance_mat"]], 1) 
  exit_df <- make_df(store_layout[["exit_mat"]], 1) 
  target_df <- store_layout[["target_df"]] 

  # we sample with replacement for each step to generate dfs of targets for all agents 
  entrance_tiles <- entrance_df[sample(nrow(entrance_df), size=n_agents, replace = 
TRUE),] 
  target_tiles <- target_df[sample(target_df$value, prob=target_df$ghi, replace=TRUE, 
size=n_agents),] 
  cashier_tiles <- cashier_df[sample(nrow(cashier_df), size=n_agents, replace = 
TRUE),] 
  exit_tiles <- exit_df[sample(nrow(exit_df), size=n_agents, replace = TRUE),] 

  agent_list = list() 

  for(i in 1:n_agents) { 
    entrance_coords = as.numeric(entrance_tiles[i,]) 
    target_coords = as.numeric(target_tiles[i,1:2]) 
    cashier_coords = as.numeric(cashier_tiles[i,]) 
    exit_coords = as.numeric(exit_tiles[i,]) 
    agent_list[[i]] = list(entrance_coords, target_coords, cashier_coords, 
exit_coords) 
  } 
  return(agent_list) 
} 

9.1.3 Core Simulation Routine 
library(dplyr) 
library(grid) 
library(reshape2) 
library(pixmap) 
library(ggplot2) 
library(plotly) 
source("astar.R", local=TRUE) 
source("searchmaze.R", local=TRUE) 
source("storedata.R", local=TRUE) 

reverse_encode <- function(store_layout, img_w=48, img_h=48) { 
  walls_mat <- store_layout$walls_mat 
  entrance_mat <- store_layout$entrance_mat 
  exit_mat <- store_layout$exit_mat 
  target_df <- store_layout$target_df 
  target_mat <- matrix(0, img_w, img_h) 
  for(row in 1:nrow(target_df)) { 
    coord = as.numeric(target_df[row, 1:3]) 
    target_mat[coord[1], coord[2]] <- coord[3] 
  } 
  img_red <- walls_mat + entrance_mat 
  img_green <- ((walls_mat + cashier_mat)*255 - target_mat)/255 
  img_blue <- walls_mat + cashier_mat + exit_mat 

  img_array <- array(c(img_red, img_green, img_blue), dim=c(48,48,3)) 
  img <- pixmapRGB(img_array) 
  return(img) 
} 

plot_mat <- function(mat) { 
  df = make_df_full(mat) 
  p<-ggplot(df, aes(x=x,y=y,fill=value)) + 
    geom_tile() + 
    scale_y_continuous(breaks = seq(0, 48, 1), limits = c(0, 48.5), minor_breaks = 
NULL) + 
    scale_x_continuous(breaks = seq(0, 48, 1), limits = c(0, 48.5), minor_breaks = 
NULL) + 
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    coord_equal() + 
    scale_fill_viridis_c() + 
    theme_minimal() + 
    theme(axis.title = element_blank(), 
          axis.text = element_blank(), 
          legend.position = "none") 
  p<-ggplotly(p) 
  return(p) 
} 
 
plot_df <- function(df) { 
  p<-ggplot(df, aes(x=x,y=y,fill=value)) + 
    geom_tile() + 
    scale_y_continuous(breaks = seq(0, 48, 1), limits = c(0, 48.5), minor_breaks = 
NULL) + 
    scale_x_continuous(breaks = seq(0, 48, 1), limits = c(0, 48.5), minor_breaks = 
NULL) + 
    coord_equal() + 
    scale_fill_viridis_c() + 
    theme_minimal() + 
    theme(axis.title = element_blank(), 
          axis.text = element_blank(), 
          legend.position = "none") 
  p<-ggplotly(p) 
  return(p) 
} 
 
plot_df_ghi <- function(df) { 
  p<-ggplot(df, aes(x=x,y=y,fill=ghi)) + 
    geom_tile() + 
    scale_y_continuous(breaks = seq(0, 48, 1), limits = c(0, 48.5), minor_breaks = 
NULL) + 
    scale_x_continuous(breaks = seq(0, 48, 1), limits = c(0, 48.5), minor_breaks = 
NULL) + 
    coord_equal() + 
    scale_fill_viridis_c() + 
    theme_minimal() + 
    theme(axis.title = element_blank(), 
          axis.text = element_blank(), 
          legend.position = "none") 
  p<-ggplotly(p) 
  return(p) 
} 
 
make_df <- function(mat, val) { 
  df <- which(mat == val, arr.ind = TRUE) %>% 
    as.data.frame() %>% 
    transmute(y = row, x = col) 
  return(df) 
} 
 
make_df_full <- function(mat) { 
  df <- setNames(melt(mat), c('y', 'x', 'value')) 
} 
 
make_mat <- function(df, val_col, img_w=48, img_h=48) { 
  mat <- matrix(0, img_w, img_h) 
  for(i in 1:nrow(df)) { 
    row = df[i,] 
    coord = as.numeric(row[1:2]) 
    value = row[[val_col]] 
    mat[coord[1], coord[2]] <- value 
  } 
  return(mat) 
} 
 
 
simulate_density <- function(store_layout, agent_list, coeff=0.1, plot=FALSE, 
name="density_plot", img_w=48, img_h=48) { 
  density_mat = matrix(0, img_w, img_h) 
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  walls_mat = store_layout[["walls_mat"]] 
  cashier_in_mat = store_layout[["cashier_in_mat"]] 
  cashier_out_mat = store_layout[["cashier_out_mat"]] 

  walls_cashier_in = walls_mat + cashier_out_mat 
  walls_cashier_out = walls_mat + cashier_in_mat 

  for(i in 1:length(agent_list)) { 
    current_agent <- agent_list[[i]] 
    # Route btw first two targets (entrance to target 1) 
    n_routes <- length(current_agent) - 1 
    for(j in 1:n_routes) { 

source = current_agent[[j]] 
target = current_agent[[j+1]] 
if(j == 2) {mg <- SearchMaze2D$new(walls_cashier_in, density_mat, coeff)} else 

if(j == 3) {mg <- SearchMaze2D$new(walls_cashier_out, density_mat, coeff)} else {mg <- 
SearchMaze2D$new(walls_mat, density_mat, coeff)} 

current_path <- mg$run(source, target) 
 if (is.null(current_path)) { 

current_path <- mg$run(target, source) 
} 
for(k in current_path) { 
density_mat[k[1], k[2]] <- density_mat[k[1], k[2]] + 1 

} 
if(plot==TRUE) { 
file_name = paste(name,"_", i, "_", j, ".png", sep="") 
density_df = make_df_full(density_mat) 
walls_df = make_df(walls_mat, 1) 
p <- ggplot(density_df, aes(x=x,y=y,fill=value)) + 
geom_tile() + 
geom_tile(data=walls_df, fill="#FFFFFF") + 
scale_y_continuous(breaks = seq(0, 48, 1), limits = c(0, 48.5), minor_breaks 

= NULL) + 
scale_x_continuous(breaks = seq(0, 48, 1), limits = c(0, 48.5), minor_breaks 

= NULL) + 
coord_equal() + 
scale_fill_viridis_c() + 
theme_minimal() + 
theme(axis.title = element_blank(), 

axis.text = element_blank(), 
legend.position = "none") 

ggsave(plot=p, filename=file_name, width=1, height=1, units="in", dpi=150, 
device="png") 

} 
    } 
    print(paste("Agent",i,"simulated...")) 
  } 
  return(density_mat) 
} 

get_monetary_loss <- function(row, item_df, total_ghi, n_agents) { 
  coord = row[1:2] 
  density = row[3] 
  value_lost<-0 
  if(density == 0) {return(value_lost)} 
  adj<-c() 
  for(i in 1:-1) 
    for(j in 1:-1) 

if(i!=0 || j !=0) 
adj<-rbind(adj,coord+c(i,j)) 

  for(i in 1:nrow(adj)) { 
    if(adj[i,1]==0 | adj[i,2]==0 | adj[i,1]>48 | adj[i,2]>48) {next} 
    if(item_df[which(item_df$y==adj[i,1] & item_df$x==adj[i,2]),3]==0) {next} else { 

item <- item_df[which(item_df$y==adj[i,1] & item_df$x==adj[i,2]),3:7] 
    } 
    e_sold = n_agents * (item$ghi / total_ghi) 
    e_left = item$qty - e_sold 
    if (e_left >= 0) { 

avg_remaining = (item$qty + e_left)/2 
integrated_qty = 1/2 * (item$qty-e_left) + e_left 
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    } else { 
time_sold_out = item$qty/e_sold 
integrated_qty = 1/2 * item$qty * time_sold_out 

    } 
    value_lost = value_lost + (density^2/100000) * item$discounted_price * item$frag * 
integrated_qty 
  } 
  return(as.numeric(value_lost)) 
} 

# Some loss functions 
get_loss <- function(densities) { 
  loss = sum(densities) 
  return(loss) 
} 

get_loss_sqrt <- function(densities) { 
  loss = sum(sqrt(densities)) 
  return(loss) 
} 

get_loss_log <- function(densities) { 
  loss = sum(log(densities+1)) 
  return(loss) 
} 

norm_loss <- function(loss, get_loss, worst_case) { 
  loss_max = get_loss(worst_case) 
  return(loss/loss_max) 
} 

get_loss_mat <- function(storedata, density_mat, target_df, n_agents) { 
  density_df <- make_df_full(density_mat) 

  item_mat <- make_mat(target_df, "value") 
  item_df <- make_df_full(item_mat) 
  item_df <- item_df[order(-item_df$value),] 

  item_df$frag <- c(rev(storedata$frag), rep(0, nrow(item_df)-length(storedata$frag))) 
  item_df$ghi <- c(rev(storedata$ghi), rep(0, nrow(item_df)-length(storedata$ghi))) 
  item_df$discounted_price <- c(rev(storedata$discounted_price), rep(0, nrow(item_df)-
length(storedata$discounted_price))) 
  item_df$qty <- c(rev(storedata$qty), rep(0, nrow(item_df)-length(storedata$qty))) 

  total_ghi = sum(storedata$ghi) 

  loss_mat <- matrix(0, nrow=48, ncol=48) 
  loss_mat[] <- apply(density_df,1,get_monetary_loss, item_df=item_df, 
total_ghi=total_ghi, n_agents=n_agents) 
  return(loss_mat) 
} 

simulate <- function(pbm_path, store_layout = NULL, storedata, n_agents=100, 
loss_fn=get_loss, max_routes=3, coeff=0.1, reps=5, plot=FALSE, name="density_plot", 
from_bitmap=TRUE) { 
  # This value is technically not necessarily the same for all agents, but we're 
assuming it is 
  print("Reading store layout from bitmap...") 
  if(from_bitmap == TRUE) { 
    store_layout <- read_img_map(pbm_path) 
  } else { 
    store_layout = store_layout 
  } 
  img_w = dim(store_layout$walls_mat)[1] 
  img_h = dim(store_layout$walls_mat)[2] 
  print("Store layout loaded.") 

  print("Randomly generating agents...") 
  agent_list <- create_agent_list(store_layout, n_agents) 
  print("Running density simulation...") 
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  density_mat <- simulate_density(store_layout, agent_list, coeff, plot, name, img_w, 
img_h) 
  print("Density simulation complete.") 

  print("Computing estimated loss...") 

  loss_mat <- get_loss_mat(storedata, density_mat, store_layout$target_df, n_agents) 

  loss_df <- make_df_full(loss_mat) 

  loss <- loss_fn(loss_df$value) 

  print("Simulation completed successfully.") 

  output = list(density_mat, loss_mat, loss) 
  return(output) 
} 

plot_output <- function(output, filename) { 
  results <- output[[2]] 
  store_layout <- output[[1]] 
  density_mat_avg <- matrix(0, 48, 48) 
  loss_mat_avg <- matrix(0,48,48) 
  loss <- c() 
  for(i in 1:length(results)) { 
    density_mat_avg <- density_mat_avg + results[[i]][[1]] 
    loss_mat_avg <- loss_mat_avg + results[[i]][[2]] 
    loss <- c(loss, results[[i]][[3]]) 
  } 
  loss_avg <- mean(loss) 
  loss_sd <- sd(loss) 
  density_mat_avg <- density_mat_avg/length(results) 
  loss_mat_avg <- loss_mat_avg/length(results) 

  density_df_avg <- make_df_full(density_mat_avg) 
  loss_df_avg <- make_df_full(loss_mat_avg) 

  walls_df <- make_df(store_layout$walls_mat, 1) 
  entrance_df <- make_df(store_layout$entrance_mat, 1) 
  exit_df <- make_df(store_layout$exit_mat, 1) 
  target_df <- store_layout$target_df 

  p1<-ggplot(walls_df, aes(x=x, y=y)) + 
    geom_rect(xmin=0.5,xmax=48.5,ymin=0.5,ymax=48.5, fill="#000000") + 
    geom_tile(data=walls_df, fill="#FFFFFF") + 
    geom_tile(data=entrance_df, fill="#FF0000") + 
    geom_tile(data=exit_df, fill="#0000FF") + 
    geom_tile(data=target_df, aes(fill=ghi)) + 
    scale_y_continuous(breaks = seq(0, 48, 4), limits = c(0, 48.5), minor_breaks = 
NULL) + 
    scale_x_continuous(breaks = seq(0, 48, 4), limits = c(0, 48.5), minor_breaks = 
NULL) + 
    coord_equal() + 
    theme_minimal() + 
    scale_fill_distiller(palette="Spectral") + 
    theme(axis.title = element_blank(), 

axis.text = element_blank()) + 
    labs(fill="GHI", title = "Store Layout") 
  ggsave(plot=p1, filename=paste(filename,"_layout.svg",sep=""), width=5, height=5, 
units="in", dpi=300, device="svg") 

  p2<-ggplot(density_df_avg, aes(x=x, y=y, fill=value)) + 
    geom_tile() + 
    geom_tile(data=walls_df, fill="#FFFFFF") + 
    geom_tile(data=entrance_df, fill="#FF0000") + 
    geom_tile(data=exit_df, fill="#0000FF") + 
    scale_y_continuous(breaks = seq(0, 48, 4), limits = c(0, 48.5), minor_breaks = 
NULL) + 
    scale_x_continuous(breaks = seq(0, 48, 4), limits = c(0, 48.5), minor_breaks = 
NULL) + 
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    coord_equal() + 
    theme_minimal() + 
    scale_fill_viridis_c() + 
    theme(axis.title = element_blank(), 
          axis.text = element_blank()) + 
    labs(fill="Density", title = "Pedestrian Density") 
  ggsave(plot=p2, filename=paste(filename,"_density.svg",sep=""), width=5, height=5, 
units="in", dpi=300, device="svg") 
   
  p3<-ggplot(loss_df_avg, aes(x=x, y=y, fill=value)) + 
    geom_tile() + 
    geom_tile(data=walls_df, fill="#FFFFFF") + 
    geom_tile(data=entrance_df, fill="#FF0000") + 
    geom_tile(data=exit_df, fill="#0000FF") + 
    scale_y_continuous(breaks = seq(0, 48, 4), limits = c(0, 48.5), minor_breaks = 
NULL) + 
    scale_x_continuous(breaks = seq(0, 48, 4), limits = c(0, 48.5), minor_breaks = 
NULL) + 
    coord_equal() + 
    theme_minimal() + 
    scale_fill_viridis_c() + 
    theme(axis.title = element_blank(), 
          axis.text = element_blank()) + 
    labs(fill="Loss", title = paste("Mean Loss =",round(loss_avg, 2),"SD 
=",round(loss_sd,2))) 
  ggsave(plot=p3, filename=paste(filename,"_loss.svg",sep=""), width=5, height=5, 
units="in", dpi=300, device="svg") 
   
  plots <- list(p1, p2, p3) 
  return(plots) 
} 

9.1.4 Item Placement   
source('simulate.R',local=T) 
# Get the store_layout for editing 
store_layout <- read_img_map("example.pbm") 
 
# Core place_items function; no need to edit this code 
place_items <- function(store_layout, storedata,select_positions, 
order_positions, order_items,threshold,x,y) { 
  #differentiate and sort prominent and normal items 
  prominent_items<-storedata[which(storedata$ghi>=threshold),] 
  prominent_items<-prominent_items[order(prominent_items$ghi),] 
  normal_items<-storedata[which(storedata$ghi<threshold),] 
  normal_items<-order_items(normal_items) 
  #create the sorted layout 
  storedata_sorted<-rbind(prominent_items,normal_items) 
  #import layouts 
  walls_mat <- store_layout$walls_mat 
  blocked_mat <- store_layout$blocked_mat 
  shelf_mat <- walls_mat-blocked_mat 
  # Zero out the entrance wall 
  # Convert the available spots into df format for sampling 
  shelf_df <- make_df(shelf_mat, 1) 
  # Select 134 shelf positions from possible positions 
  shelf_positions <- select_positions(shelf_df) 
  # Insert an item into each shelf position 
  ## Sort positions by increasing y position 
  shelf_positions<-order_positions(shelf_positions,x,y) 
  ## Bind positions to items 
  shelf_positions$value <- storedata_sorted$item_id 
  shelf_positions$ghi <- storedata_sorted$ghi 
  shelf_positions <- shelf_positions[order(shelf_positions$value),] 
  store_layout$target_df<-shelf_positions 
  return(store_layout) 
} 
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# Some example selection/ordering functions (you'll have to write more of 
these yourself) 

# A select_position function takes in a shelf_df, and selects 134 positions 
from it somehow 
select_positions_random <- function(shelf_df) { 
  shelf_positions <- shelf_df[sample(nrow(shelf_df), 134),] 
  return(shelf_positions) 
} 

select_positions_adaptive <- function(shelf_df){ 
  decay<-5 
  items<-134 
  tally<-0 
  shelf_positions<-NULL 
  for (i in 1:48){ 
    n<-48-i 
    s<-shelf_df[which(shelfdf$y==n),] 
    shelf_temp<-s$x%%decay==0 
    tally<-tally+nrow(shelf_temp) 
    if ((items-tally<items/10)&(decay>1)){ 

decay=decay-1 
tally=0 

    } 
    items=items-nrow(shelf_temp) 
    shelf_positions<-cbind(shelf_positions,shelf_temp) 
  } 
  return(shelf_positions) 
} 

select_positions_static<-function(shelf_df){ 
  shelf_df<-shelf_df[order(shelf_df$x),] 
  shelf_df<-shelf_df[order(shelf_df$y),] 
  shelf_positions = shelf_df[seq(1, nrow(shelf_df), 
floor(nrow(shelf_df)/134)),] 
  return(shelf_positions) 
} 

# An order_position function takes in a shelf_positions df with 134 rows, and 
orders them somehow 
order_positions_ascending_y <- function(shelf_positions) { 
  shelf_positions<-shelf_positions[order(shelf_positions$y),] 
  return(shelf_positions) 
} 

order_positions_descending_y <- function(shelf_positions) { 
  shelf_positions<-shelf_positions[order(-shelf_positions$y),] 
  return(shelf_positions) 
} 

order_positions_euclidean<-function(shelf_positions,x,y){ 
  shelf_positions$euclidean<-(shelf_positions$x-x)^2+(shelf_positions$y-y)^2 
  shelf_positions<-shelf_positions[order(-shelf_positions$euclidean),] 
  shelf_positions$euclidean<-NULL 
  return(shelf_positions) 
} 
# An order_items function sorts store_data based on some attribute (e.g. ghi, 
fragility, wtvr else) 
order_items_ascending_ghi <- function(storedata) { 
  storedata_sorted<-storedata[order(storedata$ghi),] 
  storedata_sorted<-storedata[order(storedata$dpmt),] 
  return(storedata_sorted) 
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} 

order_items_random <- function(storedata) { 
  storedata_sorted <- storedata[sample(storedata$item_id),] 
  storedata_sorted<-storedata[order(storedata$dpmt),] 
} 


