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IM2C CONTEST RESULTS AND PAPER

The International Mathematical Modeling Challenge (IM2C)® promotes the teaching of mathematical modeling
and applications based on the firm belief that students and teachers need to experience the power of mathematics

to better understand, analyze and solve real-world problems. In the spirit of promoting mathematical modeling
in classrooms across the globe, the Challenge began in 2015.

www.immchallenge.org
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2022 International

Mathematical Modeling
Challenge (IM2C)

The 8th annual International Mathe-
matical Modeling Challenge (IM2C)
culminated with three Outstanding
Teams. Congratulations to these teams
and all the teams that participated in
the 2022 IM?C. This year, due to the
continued effects of Covid-19, there
was no formal in-person IM?C awards
ceremony. Rather, IM?C has made
resources available to schools and
countries/regions of the top teams to
fund local ceremonies scheduled as
their situations permit.

The IM?C continues to be a rewarding
experience for students, advisors, schools,
and judges. A total of 58 teams, with up
to 4 students each, representing 31
countries/regions competed in this
year’s international round.

The purpose of the IM?C is to promote
the teaching of mathematical modeling
and applications at all educational levels
for all students. It is based on the firm
belief that students and teachers need
to experience the underlying power of
mathematics to help better under-
stand, analyze, and solve real world
problems outside of mathematics itself—
and to do so in realistic contexts. The
Challenge has been established in the
spirit of promoting educational change.

For many years there has been an
increased recognition of the importance
of mathematical modeling from universi-
ties, government, and industry. Modeling
courses have proliferated in under-
graduate and graduate departments of
mathematical sciences worldwide.
Several university modeling competi-
tions are flourishing. Yet at the school level,
even amid signs of the growing recogni-
tion of modeling’s centrality, there are
only a few such competitions with
many fewer students participating.
One important way to influence second-
ary school culture, and teaching and
learning practices, is to offer a high-level
prestigious secondary-school contest that
has both national and international

Plans for 2023

We invite countries to enter up to two
teams, each with up to four students
and one teacher/faculty advisor. The
contest will begin in March and end
in May. During that timeframe,
teams will choose five (5) consecu-
tive days to work together on the
problem. The faculty advisor must
then submit the paper and certify
that students followed the contest
rules.

The International Expert Panel will
judge the papers in early June and
will announce winners by late June.
Papers will be designated as
QOutstanding, Meritorious, Honorable
Mention, and Successful Participant
with appropriate plaques and certifi-
cates given in the name of students,
their advisor, and their schools.

Plans for the 2023 awards are still
being finalized. Complete information
about IM2C is at

www.immchallenge.org

The IM2C International
Organizing Committee

Solomon Garfunkel,
COMAP, USA — Chair

Keng Cheng Ang,

National Institute of Education, Singapore

JunFeng Yin,
Tongji University, China

Alfred Cheung,
NeoUnion ESC Organization, China Hong
Kong (SAR)

Frederick Leung,
University of Hong Kong, China Hong Kong (SAR)

Vladimir Dubrovsky,
Moscow State University, Russia

Henk van der Kooij,
Freudenthal Institute, The Netherlands

Mogens Allan Niss,
Roskilde University, Denmark

Ross Turner,
Australian Council for Educational
Research, Australia

Jie “Jed” Wang,
University of Massachusetts, USA

recognition. With this in mind, we
founded the International Mathematical
Modeling Challenge (IM?C) in 2014 and
launched the 1% annual Challenge in 2015.

The IM2C is a true team competition
held over a number of days, with students
able to use any inanimate resources.
Real problems require a mix of different
kinds of mathematics for their analysis
and solution. And, real problems take
time and teamwork. The IM?C provides
students with a deeper experience of
how mathematics can explain our
world, and the satisfaction of applying
mathematics to a real world problem
to develop a model and solution.

The 2022 IM2C Problem:
Aboard! Boarding and
Disembarking a Plane

Background

In air transportation, efficiency is time
and time is money. Even small delays
in the schedules of passenger airplanes
result in lost time for both air carriers
and their passengers. During any pas-
senger flight, there are two time-
consuming operations that depend
mostly on human behavior: boarding
and disembarking the aircraft.

In commercial passenger air travel,
airlines use various boarding and dis-
embarking methods from completely
unstructured (passengers board or leave
the plane without guidance) to struc-
tured (passengers board or leave the
plane using a prescribed method).
Prescribed methods may be based on
row numbers, seat positions, or priority

IM2C Funding

Funding for planning and organiza-
tional activities is provided by
IM2C co-founders and co-sponsors:
Consortium for Mathematics and its
Applications (COMAP), a not-for-profit
company dedicated to the improve-
ment of mathematics education,
and NeoUnion ESC Organization in
China Hong Kong (SAR).
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groups. In practice, however, even when
the prescribed method is announced,
not all passengers follow the instruc-
tions.

The boarding process includes the
movement of passengers from the
entrance of the aircraft to their assigned
seats. This movement can be hindered
by aisle and seat interference. For
example, many passengers have carry-
on bags which they stow into the
overhead bins before taking their seats.
Each time a passenger stops to stow a
bag, the queue of other passengers
stops because narrow aircraft aisles
allow only one passenger to pass at a
time. Another hindrance is that some
seats (e.g., window seats) are unreach-
able if other seats (e.g., aisle seats) are
already occupied. When this occurs,
some passengers must stand up and
move into the aisle so other passen-
gers can reach their seats.

The disembarking process is the oppo-
site of boarding with its own possible
hindrances to passenger movement.
Some passengers are simply slow get-
ting out of their seat and row, or slow
moving to the exit. Passengers also
block the aisle while collecting their
belongings from either their seat or from
the overhead bin forcing passengers
behind them in the aircraft to wait.

Requirements

Your team is to create plane boarding
and disembarking methods that will be
the most time-effective in real practice.

1. Construct a mathematical model or
models to calculate total aircraft
boarding and disembarking times.
Ensure your model is adaptable to
various prescribed boarding/disem-
barking methods and varying num-
bers of carry-on bags to be stowed,
as well as accounts for passengers
who do not follow the prescribed
boarding/disembarking methods.

2. Apply your model to the standard
“narrow-body” aircraft shown in
Figure 1.

. Compare the average, practical

maximum (95 percentile) and

practical minimum (5" percentile)

boarding times for the following
widely used boarding methods:

e Random (unstructured)
boarding.

* Boarding by Section: Examine
varying the order of aft section
(rows 23-33), middle section
(rows 12-22), and bow section
(rows 1-11).

* Boarding by Seat: In the order
of window seats (A and F),
middle seats (B and E), and
aisle seats (C and D).

Analyze how these times vary
based on the percentage of pas-
sengers not following the prescribed
boarding method and on the
average number of carry-on bags
per flight (i.e., perform a basic sen-
sitivity analysis). Based on your
analysis, which of the above
boarding methods is the best?

c. Consider the situation when pas-
sengers carry more luggage than
normal and stow all their carry-
ons in the overhead bins. How
does this change affect the results?

d. Describe two additional possible
boarding methods. Explain and
justify your recommended opti-
mal boarding method (from your
two and the three in part 2.a.).

e. Explain and justify your optimal
disembarking method.

. Modify your model for the follow-

ing passenger aircraft and recom-

mend your optimal boarding and

disembarking methods for each

aircraft.

¢ The Flying Wing aircraft with
relatively wide and short passen-
ger cabins as shown in Figure 2.

e A Two-Entrance, Two-Aisle air-
craft as shown in Figure 3.
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Figure 1. “Narrow-Body” Passenger Aircraft
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Figure 3. “Two-Entrance, Two Aisle” Passenger Aircraft
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The 2022 IM2C Outstanding Teams

School, Location Advisor Team Members
Tom Edwards
St. Andrew’s College Phil Adams Toby Harvie
New Zealand Corin Simcock
Luke Zhu
Tanupat Trakulthongchai
Kamnoetvidya Science Academy Guntaphon Phudit Thanakulkairid
Thailand Tassanasophon Kanisorn Sawangsawai
Thitiwat
Kosolpattanadurong
Yunjia Quan
Charlotte Country Day School Mick Stukes Oscar Bao
United States Logan Yuhas
Anna Torstrick

IM2C Participation

70

60

o

o
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B Teams

Numbers of Participating Countries/Regions and Teams 2015-2022

Chris Arney,
United States Military Academy, USA — Chair

Konstantin K. Avilov,
Institute for Numerical Mathematics, Russia

Ruud Stolwijk,
Cito, The Netherlands

Ligiang Lu,

Fudan University, China

The 2022 IM2C Expert Panel

Jill Brown,
Australian Catholic University, Australia

Daniel Long,
Chinese University of Hong Kong,
China Hong Kong (SAR)

Dra. Angeles Dominguez Cuenca,
Tecnolégico de Monterrey, Mexico

4. Due to the pandemic situation,
capacity limitations are sometimes
implemented on passenger airliners.
Will your recommended prescrib-
ed methods for boarding and
disembarking of the three aircraft
change if the number of passengers
is limited to 70%, 50%, or 30% of
the number of seats?

5. Write a one-page letter to an airline
executive describing and explaining
your results, recommendations, and
rationale about passenger aircraft
boarding and disembarking in a
non-mathematical way.

Note that IM?C is aware of available
resources and references that address
and discuss this question. It is not
sufficient to simply represent any of
these models or discussions, even if
properly cited. Any successful paper
MUST include development and
analysis of your own team’s model
and a clear explanation of the differ-
ence between your model and any
referenced aircraft boarding and dis-
embarking models.

Your PDF submission should consist of:
® One-page Summary Sheet.
e Table of Contents.

® One-page letter to an airline
executive.

® Your solution of no more than 20
pages (A4 or letter size), for a max-
imum of 23 pages with your sum-
mary, table of contents, and letter.
Note that your font size must be
no smaller than 12-point type.

Note: Reference List and any appen-
dices do not count toward the page
limit and should appear after your
completed solution. You should not
make use of unauthorized images and
materials whose use is restricted by
copyright laws. Ensure you cite the
sources for your ideas and the materials
used in your report.
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Glossary

Carry-On Bag — a piece of luggage a
passenger carries onto an airplane with
dimensions such that it can fit in the
overhead bin.

Disembarking — leaving (an airplane).

Overhead Bins — storage compartments
attached to the ceilings of aircraft for
baggage stowage during a flight.

The 2022 IM2C
International
Judges’Commentary
Chris Arney

Introduction

Although the topic of loading passen-
gers on an airplane was a familiar one
for some students who participated in
this year’s IM?C, the problem was chal-
lenging in both the scope of require-
ments and the depth of the modeling.
The problem asked teams to construct
models for boarding and disembark-
ing a plane, and then to use their models
to evaluate and compare various
boarding methods — some methods
were provided, and others were at the
discretion or design of the team. Ideally,
these models would provide consis-
tent and reliable results while accom-
modating the realities of various aircraft
designs and passengers carrying bags,

USA Participation

In the USA, we invite all teams
that successfully compete in the
HiMCM contest and are awarded
a designation of Meritorious or
above (Meritorious, Finalist, or
Outstanding) to compete in the
IM?C. From these participants,
US. Judges select the two top
teams to move on and represent
the USA in the IMC international
round. To participate in HIMCM
in November 2022, visit
WWW.comap.com.

stowing bags, and moving into seats.
In addition, the problem challenged
teams to consider human-based situa-
tions (e.g., some travelers not following
a prescribed method) and societal situ-
ations (e.g., emergency conditions
requiring seat-capacity limitations).

Constructing a time-based, passenger-
action model led most teams to make
use of agent-based simulations with a
few teams using closed-form, probability-
based models. Often, these methods
were new experiences for students. Given
these challenges, the IM2C judges were
impressed by the students’ modeling
skills, creativity, mathematical knowl-
edge, and writing abilities. The judges
appreciated good modeling in terms
of explaining and justifying assump-
tions; explaining the steps of students’
modeling methods; identifying strengths,
weaknesses, opportunities, and limitations
of models; conducting a sensitivity
analysis of parameter values; and pre-
senting work in a well-organized report.

This year’s IM?C problem asked teams
to:
* Compare the times and properties
for various loading methods.

* Discuss their models” adaptability
for different aircraft geometries.

e Write a letter to an airline executive
outlining the team’s results.

Teams did well in identifying and
defining the problem’s variables and
parameters, researching the elements
associated with airplane loading, and
building viable models. The judges
congratulate the teachers and advisors
who developed modeling skills in
their students and prepared teams for
this year’s IM?C.

Problem Solutions

The teams’ reports included a summa-
ry sheet, a restatement of the problem
from their own perspective and in their
own words, a discussion of the mathe-
matical modeling processes used
(especially, assumptions with justifica-
tions, good mathematical notation
with defined variables, a mathematical

model, the application of the model to
the problem requirements, and analy-
sis of the results). Most teams also
identified their model’s strengths and
weaknesses and wrote conclusions
with recommendations. The following
paragraphs discuss the details of these
elements.

Summary: Most papers began with a
one-page summary of the modeling
methods used and the results. This sum-
mary is an important part of an IM?C
report in that it provides the first
chance for a team to tell readers about
their processes, results, and highlights.
A summary should clearly describe
the approach to the problem and the most
relevant conclusions. Judges usually
read the summary first to understand
the basic approaches and the context
for the paper’s models, results, conclu-
sions, and recommendations. Some
teams included too much information
on one detailed element of their work
or did not summarize their results and
recommendations. The best summaries
were both clear and concise.

Problem Restatement: Teams often
restated the problem in their own words
by identifying the specific requirements
on which they focused and the organ-
ization of their work. Judges use this
part of a report as a preview and
overview of how the team approached
the problem and the terminology and
notation used in the the paper.

Mathematical Modeling Processes:
Teams explained the processes they
used in a logical and clear manner.
They made assumptions to clarify or
simplify elements of the problem’s
conditions so they could use a mathe-
matical structure to emulate the real
situation. Teams defined their models’
variables in their reports. Some teams
used flow charts or pseudo code to
discuss their models and thus avoided
overwhelming readers with coding
details and programming facets. For
the airplane problem, the model had
to make sense and satisfy the following
challenges:



44

IM2C Contest

CONSORTIUM 123 Fall/Winter

e Calculation of total aircraft board-
ing and disembarking times.

* Adaptability to various prescribed
boarding/disembarking methods
and various aircraft geometries.

¢ Adaptability to a varying number
of carry-on bags per passenger.

e Allowance for non-rule-following
passengers.

Teams used a variety of methods to
model the behavior of passengers who
disobey boarding instructions. In some
models, such passengers were assigned a
random position in the queue; in others,
disruptive passengers were assigned by
common characteristics. For example,
passengers “in a hurry” went to the front
of the queue and late passengers
boarded the plane at the end of the queue
or with the incorrect boarding group.

Application of the model: Teams ensur-
ed the geometry of the narrow-body
plane was accurately reflected in their
model. Then, many teams ran their model
as a Monte Carlo simulation to deter-
mine:

* Boarding times for random
(unstructured), by-section, and
by-seat boarding methods.

¢ Impact on the boarding time with
respect to the percentage of pas-
sengers not following the rules
and with respect to the number
and variety of carry-on bags.

® Boarding times for two additional
boarding methods of the team’s
choice.

e Recommendation of the best
boarding method from the five
choices.

® Recommendation of the best
disembarking method.

Recommend boarding/disembarking
methods for new aircraft geometries:
The teams modified their models to
match the geometries of two addition-
al aircraft and reran their models for
the “Flying Wing” aircraft and a “Two-
Entrance, Two-Aisle” aircraft and ana-
lyzed their data.

Modeling of capacity limitations:
The teams modified their models to
handle changing capacity limitations.
They determined the impact on board-
ing/ disembarking when the number
of passengers was limited to 70%, 50%,
or 30% of capacity.

Sensitivity, strengths, weaknesses,
conclusions, and references:

Note: Sensitivity analysis is an impor-
tant element of modeling. The main
idea is to determine how sensitive results
are to variances in the parameters.

Teams used several methods to test
the sensitivity of their models” param-
eters to determine the robustness of
the results. Some teams also included
an error analysis and a discussion of
the strengths and limitations of their
models. Successful papers used the
results of the model to provide recom-
mendations and conclusions on loading
and unloading the passengers and their
carry-on baggage. And finally, teams
documented and identified any
resources used.

One-page letter to an airline executive:
As required, teams wrote a letter to an
airline executive who might not want
to read the details of the mathematical
modeling. Good letters presented
general principles, outlined the method-
ology, and provided the results and
recommendations in an understandable
way.

Goals of the IM2C and the
Roles of the Judges

Goals of the IM?C are to inspire student
modelers to make appropriate assump-
tions that lead to viable approaches,
use inventive and creative ideas as
needed, and apply the mathematics
that students know in the models they
build and implement. By accomplish-
ing these goals during the IM?C, stu-
dents develop new skills in modeling
and refine and practice the skills they
already possess. This year’s IM2C
teams showed their modeling skills by
making appropriate choices for their

models and successfully implement-
ing these models for the aircraft given
in the problem statement. Most teams
used a simulation as the primary
model for airplane loading processes.
Since IM2C does not require inclusion
of computer code in a report, success-
ful teams often used a description of
the code, a flowchart, or a simplified
pseudo code to explain the model in
their report. Some teams included
their code in an appendix, but, as the
IM2C’s rules state, judges do not nec-
essarily read the code. The model itself
is more important than the code, as are
the steps taken in developing the
model and calculating the results.

By reading the papers, the judges eval-
uated the teams modeling process and
determined how well the student teams:

e Created and justified (i.e., through
assumptions) their models and
parameter values.

® Demonstrated creativity in the
different elements of the model.
In this year’s problem, this seemed
particularly important for the
shuffle that takes place as passen-
gers temporarily move out of their
seat to unblock and make way for
other passengers to take their seats.

e Communicated their model to the
reader.

Some Examples of Good
Modeling

Of the 58 papers, 28 were judged
Successful, 21 were awarded Honor-
able Mention, six achieved Meritorious,
and three were judged as Outstanding.
The strongest teams demonstrated an
understanding of the processes and
structures involved in the problem
and used their knowledge to build a
viable model. Some of the innovative
methods and assumptions in the best
papers included:

e Splitting boarding into two com-
ponents: queuing sub-model and
traveling-to-the-seat sub-model.
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Altering the order of the passen-
gers in the boarding queue to sim-
ulate different boarding methods.

Researching factors such as moving
speeds of passengers and simpli-
fying the time increments (steps in
their simulations) by having pas-
sengers move one cell per time

period.

Running simulations for 1000
iterations.

Doing sensitivity analysis on
parameters such as the number of
people who disobey instructions
(late passengers and passengers who
jump the queue) and numbers of
carry-on baggage items.

Developing a method of boarding
based on a loading order of window,
middle, and aisle seat holders.

Identifying several types of travel-
ing groups (e.g., a family with two
young children) and allowing such
groups to board together.

Having the simulation block the aisle
whenever a passenger is loading
carry-on luggage into an overhead
bin.

Using graphic displays of the
Monte Carlo simulations, which
were helpful for visualizing geome-
tries of different aircraft and for
understanding the flow of the
boarding methods.

Assuming that once on the plane,
passengers behave rationally and go
to their seat with a predesignated
path.

Determining the complexity of the
boarding method. This enabled the
simulation to adjust the parameters in
the boarding method because the
more complex the method, the
more difficult it is for passengers to
follow rules, and thus some pas-
sengers might get frustrated and
intentionally ignore queuing rules.

® Considering realistic conditions
when choosing the best boarding
and disembarking method (i.e.,
with a reasonable percentage of
passengers not obeying instruc-
tions or, preferably, based on analysis
over a wide range of percentages).
Many teams did this successfully,
which enabled them to discard
theoretically highly effective, yet
very complex and “fragile” boarding
methods.

The judges had the opportunity to read
many excellent papers that developed
innovative algorithms for passenger
movements and event timing. A few
papers used a closed-form framework
for the loading times rather than code
a simulation. In particular, the team
from Singapore’s Victoria Junior College
had a strong model with excellent expla-
nations of their work using this type of
framework. The judges commend that
team’s excellent work and innovation.

Advice to Future Teams

As a valuable tool for problem solving
and issue analysis, modeling seeks to
describe a real-life situation using
appropriate mathematics. For the IM2C,
a team should organize into a produc-
tive group so they can focus their
efforts on the requirements of the
problem and write a paper in a short
period of time. Budgeting time is critical
because a team needs enough time
both to solve the problem and to com-
municate their work and results. Judges
do not look for papers that use the most
sophisticated mathematics, so a team
should not force the use of mathematics.
A better approach is to use mathemat-
ics that the team members understand.
Later, as appropriate, a team can refine
and enhance their model to increase its
precision or adjust assumptions to find
a more broadly applicable solution.

A paper should list all sources used
and document how they were used.
Overall, the paper should present the de-
velopment and analysis of the modeling

in a manner that a wide audience
understands. The paper should con-
clude with a summary of results and
recommendations. The summary should
be a concise rendering of the paper for
a scientific reader (who is interested in
the assumptions, model features, meth-
ods, and results), while the letter to an
executive should focus on general
principles, main results, and their
application to real life (profits, reliabil-
ity, risks, etc.).

Conclusion

The IM?C judges value creativity,
innovation, soundness and appropri-
ateness of modeling approaches, as well
as clarity in presenting ideas, model-
ing decisions, results, and analysis.
The judges, who are experienced mod-
elers and teachers from a wide range
of countries, compliment this year’s
teams on their efforts and the team
members for their participation. The
judges thank all the schools, teachers,
and advisors for making it possible for
students to participate. This year, the
judges were rewarded by reading
many excellent submissions and wish
all the participants success in their
future modeling and mathematical
endeavors.

For more information about the
IM2C, including the complete
2015-2022 results and
sample papers, visit

www.immchallenge.org
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St. Andrew’s College
Christchurch, New Zealand

Advisor:

Phil Adams

Team Members:
Tom Edwards
Toby Harvie
Corin Simcock

Luke Zhu
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Summary Sheet

If you have ever been on an aircraft, it is plane to see how slow boarding and disembarking is. For
many this is insignificant, but for an airline company saving even a couple of minutes for each flight’s
boarding and disembarking will result in huge savings when considering the tens of thousands of
airports and flights that occur each time. For an industry still struggling from the collapse of the
tourism industry due to COVID-19, optimal and robust boarding and disembarking methods must
be found.

To achieve this we developed two models, one for each of boarding and disembarking. As boarding
and disembarking planes is an inherently stochastic process, we created a computational simulation
over a pure mathematical model. Thus, we could better account for variable human behaviours and
scenarios, giving a much more accurate distribution of data. Whilst many models already exist for
this purpose, a key point of difference of our model is a greater consideration to several aspects of
human behaviour. Namely, disobedience of boarding instructions, and travelling in groups.

We first modelled the Narrow Body Aircraft, simulating different boarding and disembarking meth-
ods using a Monte Carlo method. To create different boarding methods, we generated a randomized
queue of passengers in the order that the boarding method prescribes (accounting for disobedient
people) which could then be simulated boarding. Over many simulations, we could obtain an accu-
rate average for the total time taken, allowing us to determine the most optimal method (least time
taken). We also proposed two additional methods and ran them through the same simulations.

To simulate disembarking, we gave all seated passengers a priority value. Disembarking was car-
ried out by moving passengers towards the exit at different rates dependent on their priority level.
By altering the priority values we could carry out different disembarking methods and account for
disobedience.

Both models implemented real-world data for factors such as moving speeds. This was to ensure the
highest accuracy of our resulting times. We comprehensively analysed the results of these simulations,
determining the effect of altering variables such as the number of people who disobey instructions,
and varying numbers of carry-on baggage.

We adapted our models to two other passenger aircraft, the Flying Wing and the Two-Entrance
Two-Aisle, and applied the most optimal boarding and disembarking methods used on the Narrow
Body plane. Furthermore, we considered the effect of a reduced capacity of the passenger aircraft, a
relevant deliberation in the age of COVID-19.

Overall, it was found that for boarding, one of our own proposed methods — boarding in the or-
der of window, middle and aisle seats with the allowance of groups to board together — was on the
whole the most optimal over the three aircraft. The optimal disembarking method was one in which
the plane was unloaded from the back of the craft to the front.
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1 Introduction

1.1 Background

As society becomes increasingly globalised, the importance of air travel grows. Flight numbers
before the COVID-19 pandemic were at an all-time high, and they have doubled in the past 20 years.
Following a temporary disruption due to COVID-19, this trend appears ready to continue it’s steady
upwards climb([1]. This has the consequence that small optimisation changes can result in enormous
savings for both airline companies, passengers, and airports in terms of usable time wasted. Some of
the biggest bottlenecks for plane turnaround are boarding and disembarking efficiency - that is, the
way that passengers are loaded to and unloaded from planes[2]. There exist a variety of methods for
these processes, each with varying theoretical and practical efficacies. As such, this report presents
our developed model and simulates different onboarding and embarking methods for various aircraft
models.

1.2 Problem Restatement

To ascertain the efficiency of different systems, we will develop two models with allowances for
practical considerations that can be adapted to a variety of conditions.

1. Develop a plane boarding model and disembarking model which allows us to test the efficiency
of different boarding/disembarking methods on a narrow-body plane

2. Adapt the models to test on different aircraft types (i.e. Flying Wing and Two-Entrance
Two-Aisle) and also the effects of limited capacity flights due to COVID-19

3. Write a one-page letter to an airline executive that explains our results and its benefits to their
airline

1.3 Basic Assumptions

Our initial model uses a few basic assumptions. The aircraft is to be divided into cells which one
person can occupy at a time. The aisle space between rows and each seat is represented by one cell.

e Only one person can comfortably walk in an aisle cell

Justification: Although aisle width varies by aircraft, a reasonable estimate is 0.50m wide[3].
On average, men have longer shoulder width than women, at 0.41m wide[4] and passengers
are often carrying luggage which increases their width requirement. Thus, it is reasonable to
assume that only one person can walk down the aisle at a time, with passengers both being
laden with bags, respecting personal space, and potentially being weary of close contact due to
infection risks. As such, when a passenger is loading their carry-on luggage into an overhead
bin, the aisle is also blocked.

e Seated passengers block passengers who wish to sit further down in the same row
Justification: The passenger cannot leap over the seated passenger. Not only is this valid
from a social etiquette perspective, but in the provided aircraft designs, legroom looks to be
minimal so it is physically unfeasible too.

e When a seat passenger leaves a row to make room for an incoming passenger, they are momen-
tarily able to inhabit the same aisle cell
Justification: As the passenger will want to reach their seat, they will not mind temporarily
having reduced room as they move into their seat cell.
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e Time to walk one aisle cell is constant
Justification: This time was obtained by analysing a sample of n = 10 YouTube videos of
people walking down aisles on flights, by counting the number of frames elapsed when each
individual walks one aisle cell, and the playback details of the YouTube videos (typically either
60 or 30 frames per second - these are listed in the references). Using this, we can determine
that the time to move one cell down the aisle is given by 1.05s.

1.4 Variables and Factors

Several variables were used in our model to account for real-life phenomena. Some of these will be
expanded on in later sections.

A bag coefficient was used to give a weighted probability of each passenger having carry-on
luggage that they would want to stow in an overhead locker.

Another variable was the number of groups. Passenger populations are not homogenous; often
they contain inseparable groups such as families of varying sizes. Members of these groups were
seated adjacently in the same row and entered the plane in adjacent cells too. Upon entering the
plane, it was assumed that groups would be in an order that would minimize blockage when getting
into seats (i.e. in the order window, middle, aisle). This is reasonable as groups would want to
minimize their own inconvenience and could communicate with each other to align themselves in this
order. This factor has an appreciable effect on different boarding methods and was rarely investigated
with any depth in any of the papers found in our literature review.

A disobedience coefficient was introduced to model the common scenario of passengers not
following instructions. In these cases, a passenger (or group) would enter the plane in a different
boarding category than ordered, which could be caused by ignorance, impatience or lateness. This,
much like the number of groups, was rarely considered in an in-depth manner in the existing
literature but would still significantly affect boarding times.

2 Narrow-Body Boarding

For both our models, we simulated the entire boarding/disembarking process. Keeping track of time
during this simulation, we could calculate total boarding/disembarking time. Python 3.9 was used
for this simulation.

2.1 Boarding Model Situation

To model boarding, we designed an algorithm that would see all passengers make their way to their
assigned seat. Once on the plane after waiting in the boarding queue, passengers would follow a rigid
set of rules, and variation would naturally occur due to variation in input: passengers had randomly
generated differing numbers of baggage, and orders in which they entered the plane. Different
boarding methods would be accounted for in the order of which passengers in prioritized seats entered
the plane.A simplified process of the model as experienced by a passenger is best represented in the
flow chart in Fig 2.1. This logic is easily followed and provides a robust algorithm that passengers
can follow.
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Figure 2.1: The logic behind passenger movement in the narrow-body aircraft

In the model this is simulated for all passengers simultaneously, as any passenger in the aisle
could be at any step at any time. This is done by repetitively iterating down the aisle, starting from
the passenger furthest from the entrance. Their state is determined, and an action done accordingly.
Since it is assumed that there is a steady flow rate into the plane, if the first position in the aisle is
ever empty, then the next passenger in the boarding queue occupies this space — ‘passenger enters
plane’ in the flow chart. A key part of this simulation is the concept of an internal clock. Each
passenger has this attribute, which counts down the real time (e.g., 1 sec) until they can complete an
action. For example, the time to progress one cell forward is constant. The section of the flow chart
enclosed in red is implemented in the simulation by calculating the total time that these actions would
take and increasing the passenger’s internal clock until this time is achieved, whereupon they can
undertake their action. A visualisation tool was used on the code, allowing us to generate real-time
visualisations of the simulations (see Fig 2.2, and the code in Appendix NUMBERHERE).

Figure 2.2: Visualisation tool in use on the narrow aircraft. Note that the aisle is currently blocked
by a passenger in row 9.

In the following sections, we derive how these times are calculated.

2.1.1 Carry-on Baggage Delay

In airplanes it is commonplace that passengers load their carry-on luggage into the overhead bins.
The aisle is blocked for the duration of this process. To account for this, the following piecewise
function was developed to model the time that each passenger blocks the aisle while loading carry-on
bags (which impedes the flow of passengers down the aisle).




CONSORTIUM 123 Fall/Winter

52

Variable Description
Lz Time that the main aisle is blocked due to carry-on luggage loading
Mpags Number of carry-on bags to be stored in the overhead bins
Nbins Number of carry-on bags present in overhead bins before storing
Tinias Maximum number of bags overhead bins can hold
Cy, C1,Cy Scaling constants depending on the value of 7,4,
( .
0 if npags =0
G .. =8
Tbags (nbags> Mpins, nmar) =41— Clnbins/nmaz bage = (]-)
C C.
2 2 if Npgge = 2

\ 1= Clnbins/nmax g 1= (nbins + 1)/nmar

The model only considers ny,4s € {0, 1,2} since it is assumed that the maximum number of carry-
on items that each passenger is permitted to have is ny,, = 2. Many airlines, including Air New
Zealand[5], impose this maximum (even for business class passengers). The benefit of this equation is
in its generality; its many parameters allow for precise calibration to produce more accurate results,
especially for different aircraft models. For the purposes of modelling the narrow plane, we assumed
each row of three had an overhead bin with capacity n,,., = 6 since each passenger in the row could
carry at most npegs = 2. This is assuming not all the stowed items are full size suitcases: some
carry-ons are likely to be smaller items such as handbags/tote bags. The passengers will be able to
fit more of these into an overhead bin, thus the larger capacity. Then, taking n,.. = 6, the values
of Cy, C1, Cy were calibrated to be 4, 0.8, and 2.25 respectively. This yields the following equation,
which was implemented into our model.

(0 if Nags = 0

4

Tbags(nbags: Npins, 6) = 1-— 0.8nbins/6 s THbage = L (2)

4 n 2:25
) 1— O.STLM",,/G 1-— (leins + 1)/6

The function is piecewise to easily account for the varying number of bags that each passenger
carries. Passengers carrying no bags do not take time to stow, while those stowing two bags take
longer than those stowing one bag (thus the added term). Another consideration is that the function
is designed to increase when there is less space in the overhead bin (i.e., when s /Mma, 1s large)
as passengers will have to find space and squeeze their bags in, increasing aisle blockage time. For
instance, if a passenger has one bag and there are already 1/6 bags in the overhead bin, then
Thags(1,1,6) = 4.6. However, if the compartment is almost full with 5/6 bags, then T,4(1,5,6) = 12
as the passenger will have to locate a space and squeeze their carry-on in.

if Npags = 2
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2.1.2 Shifting Seats Delay

Another large source of aisle blockage arises from the common situation where a passenger tries
to reach their seat in a row but is blocked by a seated passenger. Before the passenger can reach
their seat, the seated individual must stand up and move out to the aisle to allow the passenger to
reach their seat, before sliding back. This process is lengthy and will impede the flow of passengers
down the main aisle. This is furthermore complicated by the fact that there are many variations
on this scenario, with different seated passenger positions and passenger seat goals, which will have
appreciably different delay times. To model the additional time needed for these different shuffles,
Eq. 3 was derived.

Variable Description

Tinutisie Time that the main aisle is blocked

bag Time taken for a seated passenger to stand up

t; Time taken for a passenger to travel the width of a seat

f The index of the furthest seat that blocks the passenger’s seat
N The number of seated passengers that block the passenger’s seat

Let the seats be indexed such that the aisle seat has index 1 and the index of each consecutive
seat increases until the window seat. Since we are only concerned with total time that the aisle is
blocked, only the time that passengers are occupying the aisle needs to be kept track of. First, the
person seated furthest from the aisle stands and moves into the aisle (¢, + fts). Then the passenger
moves into the row (¢,), and finally the previously seated passengers move back into the row (nt,).

Tshufjlc(fy ns) = tup + fts + ts + nsts
=ty +t,(f +1+n,) (3)

Following this derivation, we state that the equation makes the following assumptions:

e The seated passengers notice the passenger once they are standing next to the row
e All the required seated passengers stand up at the same time and begin to exit the row
e That two people can inhabit the aisle cell adjacent to the row (assumed earlier)

e Once the passenger has entered the row, the previously seated passengers begin moving back
into the aisle, following right behind the passenger in the correct order

These assumptions are sufficiently realistic to generate results which closely model reality.

2.2 Boarding Queue Generation

A queue of passengers with assigned seats was generated to move into the aisle. By altering the
order of the passengers in this queue, we could simulate different boarding methods. For example,
we could place everyone in the queue in order of aft, middle, front. Within these sub-sections of
the queue, the order was randomized each trial to further increase realism. At this point, we also
assigned each passenger a discrete number of baggage, either 0, 1, or 2. This was done by utilizing
a weighted probability. Overall, we implemented algorithms to create boarding queues for all the
required boarding methods, as well as several others. However, to increase realism of the model, we
added additional variation within these.
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2.2.1 Disobedience Coefficient

Undoubtedly, there will be passengers who do not follow the rules of whichever boarding method is
in place. This is due to two main reasons: impatience (boarding before they are called), and lateness
(being late to their boarding time). These passengers are rarely accounted for in the literature, yet
they have an appreciable effect on boarding times. To include this in our model, we introduced the
disobedience coefficient, v, the probability of any passenger in the queue to not follow the desired
boarding method. For instance, in a sectional boarding method, a passenger sitting in the aft section
of the plane would have a 9 chance of boarding with a different group (and given that they do, a
50% chance for either group). Initially this was fixed at ¢» = 0.3; online studies found that 30% of
passengers are late for their flights , and we thought that this was a reasonable number that would
be impatient as well.

2.2.2 Groups of People

Another important consideration in the model is the existence of groups of people that board together.
Families, couples, and the like are present in high concentration on flights and are often seated
together. Importantly and as discussed previously, they board together and enter the queue in the
way in which they would enter seat rows, decreasing total boarding time. To account for this in our
model, when a passenger in queue is generated, there is a weighted probability that they will be in
a group of 1, 2 or 3. Groups of 1 are simply regular passengers. Groups of 2 or 3 are adjacent in
the boarding queue and are seated in adjacent cells. Groups of 4 or larger were excluded since the
aircraft only allowed a maximum of 3 to sit together in a row, effectively meaning a group above 3
can be split into two groups. Initially, the weighted probabilities of a passenger being in a group of
1, 2 or 3 was set at (20,80,10).

We also considered the effect of the disobedience coefficient on groups. We initially considered a
group to be disobedient if any members of the group of size n were disobedient. However, as (1 — 1))
is the probability that a passenger is obedient, then (1 — )" is the probability that the entire group
is obedient. Hence, 1 — (1 — ¢))" is the probability that the group would be disobedient. For a
value of 0.3, this would create a disobedience probability of 0.51 for groups of 2 and 0.657 for groups
of 3. We thought that this was unrealistically high, and instead determined that the disobedience
probability would be v for the entire group.

2.2.3 Bag Coefficient

A key stochastic variable in this model is the number of carry-on bags that any given passenger
will stow in the overhead lockers. Just as in real plane boarding, this is clearly prone to variation.
To account for this, we introduced another 3-tuple in the code to give a weighted probability of a
passenger stowing either 0, 1 or 2 bags. Unfortunately, there was a lack of available data on average
passenger bag count online. As such, further analysis of the previous YouTube videos allowed us to
tentatively obtain an estimate of (20,80,10). However, in the sensitivity analyses later this value was
changed appropriately, allowing us to determine the validity of this initial assumption.

2.3 Modelled Results for Provided Boarding Methods

The three provided methods for boarding were random boarding, boarding by section, and boarding
by seat. It was assumed that boarding by seat would make no allowances for groups of people.
However, the other methods were modelled using groups.

CONSORTIUM 123 Fall/Winter
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2.3.1 Random Boarding

At first glance, the method of random boarding seems crude and inefficient. However, simulations
run on our model reveal that the random method is reasonably effective. It took on average 689.4
seconds to finish boarding the plane, with a 5th percentile of 626.7s and a 95th percentile of 755.7s.
This means that 90% of the values fall in this range of 129 seconds.

Random Boarding

Mean = 689.43

Occurence

5th Percentile = 626.7

- /‘—l' ]—‘_L 95th Percentile 755.7

r T T T T T T 1
400 500 600 700 800 900 1000 1100

50 100 150 200 250

0
L

Time Taken (s)

Figure 2.3: Monte Carlo simulation graph of the random boarding method

2.3.2 Boarding by Section

The second supplied method was to board the plane in sections. Boarding by aft (rows 23-33), middle
(12-22) and front (rows 1-11) sections in varying order produced different results in our model. A
set of results for all possible variations can be seen in the bar chart in Fig 6.1, but we discuss only
the most and least optimal methods.

Row A A
Row B A
Row C

Aisle
Row D 4
Row E A
Row F

30

Figure 2.4: Visualised boarding by section starting with the aft. Note the disobedient passengers
who have already seated themselves in the front and middle sections.
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Figure 2.5: Monte Carlo simulation graphs of boarding front, middle, aft and aft, middle front
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After running 10,000 trials, we found that the most optimal order of boarding was aft, middle,
front (see breakdown in Appendix A). The mean time taken to fill up the narrow body airplane
was 768.8 seconds, with 90% of the times falling between 696.8s and 845.6s (spread of 148.8s). In
comparison to this, it took on average 870.4 seconds to board using the front, middle, aft method,
with 90% of the times between 800.1s and 950.9s (spread of 150.8 seconds). This difference can be
explained by considering Fig 2.6. On the left visualisation, the back fills first and so there is room
to queue in the aisle, while on the right when the front is boarded first, the queue extends outside of
the plane. Interestingly, this common method for boarding the plane is actually significantly slower
than a random boarding order. However, the ability to simplistically split boarding into groups of
people is valuable for airline companies, as it provides structure as to who should line up when. In
the random boarding method, everyone is called to line up at once. This may potentially cause large
queues and waste passengers time queuing in a long line.

Row A Row A
Row B H Row B l 0
Row C Row C [#]
Aisle Aisle [S]
Row D L m l

Row D
Row E u o Row E o
Row F Row F — oo e - . .
5 10 15 20 25 30 5 10 15 20 25 30

Figure 2.6: Visualisation of boarding by section, with AMF on the left and FMA on the right. Note
the disobedience passengers sitting in the incorrect sections.

2.3.3 Boarding by Seat (WMA /WilMA)

The plane can also be boarded by seat type. This method allows all passengers with a window seat
to board first, then middle, and finally aisle seats. Initially it seems like an ideal boarding method as
it is relatively fast, with a mean boarding time 519.1 seconds. It is consistent too, with 90% of the
values within 85 seconds of each other (5th percentile 479.1s; 95th percentile 564.1s). Not only this,
but it is also straightforward to implement, with 3 easily definable groups of passengers. However, it
splits groups. This is effectively unworkable in practice due to the separation of groups, particularly
in the case of children and elderly.

Boarding by Seat: No Groups

250 350
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Figure 2.7: Monte Carlo simulation graph of boarding by seat without groups

2.3.4 Sensitivity Analysis of Provided Boarding Methods

We now perform a sensitivity analysis on the provided boarding methods.
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Sensitivity Analysis of 3 Given Models
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Figure 2.8: Sensitivity analysis of the disobedience coefficient on the interval 0 < ¢ <1

Fig 2.8 shows the impact of changing the disobedience coefficient on the time taken to board, for
the three given models. The effect of changing the disobedience coefficient for the section boarding
was most interesting. As the number of people not following the prescribed method increased, the
boarding method trended towards random. This meant the time taken decreased as random boarding
is faster than section boarding. At a disobedience coefficient of v = 0.5, the boarding method is
effectively random, thus the times are equivalent. However, as more people decide not to board
with their prescribed group, the time starts to increase again. This is due to the boarding becoming
‘ordered’ again by section, which is slower than a random boarding method. This behaviour from
the boarding by section method is ideal for airline companies, as a realistic extent of disobedience
will help their boarding times. The random boarding method is completely insensitive to changes
in disobedience, as there are no rules to disobey. The boarding by seat method without groups
is the fastest boarding method provided, but it is also the method most impacted by changes in
disobedience. This is potentially undesirable behaviour in a boarding method for airline companies,
however under all reasonable values of the disobedience coefficient, boarding by seat is the fastest
boarding method.

Sensitivity Analysis of 3 Given Models
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Figure 2.9: Sensitivity analysis of provided boarding methods by scaling a part of the bag
coefficient.

Changing the bag coefficient changes the number of people without bags. The higher the coef-
ficient, the higher the number of people without bags. The relevant time relating to bag numbers
is the time spent in the aisle stowing. As such, only the number of bags stowed is pertinent to this
model. Therefore, our variation of the bag coefficient (integers from 0 to 180) is effective at describing
the impact of all plausible variations in bag numbers and bag stowage on the time take to board an
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aircraft. From this analysis, we found that the three recommended methods are of equal sensitivity
to variations in the bag coefficient. This is shown by the identical shape of the curves.

2.4 Modelled Results for Other Boarding Methods
2.4.1 Modified Steffen Method

The Steffen method is a plane boarding method proposed by Jason Steffen in 2008 which is suggested
to be the method that produces the optimal plane boarding time[6]. However, this method is highly
theoretical. It relies on the unrealistic assumption that passengers are efficient and highly organised.
Instead, we present the modified version of the Steffen method which has a slightly larger grounding
in reality. This method boards even numbered rows on the right hand side, then even rows on the
left, then odd rows on the right, to odd rows on the left. This was almost the fastest boarding method
we tested, with a mean time to board of 647.05 seconds. The 5th percentile was 595.3 seconds, and
the 95th percentile was 696.5 seconds (a spread of 101.2 seconds).

Steffen Modified Boarding

300

200

Occurence

Mean = 647.05
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Figure 2.10: Monte Carlo simulation graph of the modified Steffen method

2.4.2 Prioritised Groups

In this method, passengers are classified as having one of two classes of walking speeds: normal and
slow. This removes the need for our initial assumption that walking speed is relatively constant
and allows us to test the validity of this assumption. Many airlines allow prioritised groups such
as families with young children, disabled and elderly people to board first. The passengers in these
prioritised groups are classified as having slow walking speed. We run this method through our model
to determine its efficacy.

Groups First Boarding
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Figure 2.11: Monte Carlo simulation graph of the prioritised group boarding method
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2.4.3 Modified Boarding by Seats (WMA)

As mentioned, the WMA has some serious drawbacks, particularly in regard to the splitting of
groups. To overcome this, we devised a modified WMA method, which is one of our additional
boarding methods. In this seating method, window seats are boarded first. However, if someone
with a window seat is also part of a group, that whole group will board. The same thing occurs for
middle seats and aisle seats. This avoids the problem of splitting groups while maintaining some of
the efficiency of the WMA method.

Boarding by Seat: Groups
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Figure 2.12: Monte Carlo simulation graph of the modified boarding by seats (WMA) method

The mean boarding time we obtained from this method was 650.84 seconds, with a 5th percentile
of 598s and a 95th percentile of 711s (spread of 113 seconds). This adjusted method is relatively
novel and hasn’t seen much discussion in literature. However, its unique combination of practical
and theoretical efficiency makes it an attractive proposition.

2.5 Optimal Boarding Method

After analysis of the previous five methods, we conclude that the modified WMA method is the
best. The mean time to board the narrow body plane after 1,000 trials is 650.84 seconds. It should
be noted that this isn’t the optimal time that was achieved; the modified Steffen took only 647.05
seconds, and WMA without groups took 519.13s. This data is summarised in Fig 2.13. However,
the modified WMA is significantly more practical to implement than both. The modified Steffen
requires an unrealistic degree of coordination from random passengers and WMA without groups has
the unrealistic assumption of splitting families and other groups apart. The modified WMA method
allows for groups and can be easily implemented by airlines (by just calling seat letters to board,
including family groups). It is also less sensitive to changes in the disobedience coefficient than
alternative methods, such the Steffen modified. Although the time to board is initially slightly faster
in the Steffen modified, as the disobedience coefficient increases, the time to board from the Steffen
method increases faster than the time to board from the modified WMA. This is advantageous, as
it means there is likely less variation in this modified WMA model in comparison to similarly fast
boarding methods, allowing airline companies to better predict the boarding times.
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Comparison of Methods
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Figure 2.13: Comparison of Monte Carlo simulation graphs of different boarding models featured in
previous sections

Sensitivity Analysis of Chosen Method Against Alternatives
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Figure 2.14: Sensitivity analysis of chosen methods for disobedience coefficient

3 Narrow-Body Disembarking

Having run simulations on our model under different boarding methods, we now turn our attention
to the problem of disembarking. When exiting a plane, people typically move towards the nearest
exit whenever space becomes available. A simulation of this is the basis of our disembarking model.
By modelling individual interactions, such as what happens when two people come into the same
space, we were able to ensure that our model was true as possible to a real disembarking.

3.1 Generation of Priority Map

The disembarking model runs through the generation of a priority map. Each person/group is
assigned a priority value, representing how much they want to leave the plane. This is realistic since
some people are desperate to leave and others being happy to sit on the plane until the rush dies
down. This value is used when there is a passenger interaction. The priority values of each passenger
that can move into the square are compared, and the passenger with highest priority is given the
right of way. This map can also be manipulated to get different disembarking methods. By giving
the highest priority to passengers we want to leave first, we can manipulate the order of who leaves
first to find an optimal disembarking method. As such, different methods call for different priority
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maps. The creation of the priority maps begins with the creation of an ideal priority map. In this
map everyone would be assigned values such that they’d disembark in the desired fashion. Fig 3.1
shows an ideal priority map for disembarking by row, back to front, in the narrow body aircraft.

Row A A
Row B 4
Row C 4

Aisle A
Row D A
Row E A
Row F

Figure 3.1: Ideal priority heatmap of back to front disembarking

In practice it is highly unlikely that everyone would follow a perfect disembarking model and
therefore a disobedience coefficient was implemented, similar to the boarding model. The value of
the disobedience coefficient was increased from 0.3 (in the boarding model) to 0.4 in this disembarking
model. This choice was based on the fact that people are more likely to be tired, and may just want
to leave the plane as soon as possible following a long flight. There is no feasible way to obtain data
for this particular coefficient, and to investigate the effect this coefficient has on boarding times we
performed a sensitivity analysis, varying the disobedience coefficient. Like in the boarding model, the
disobedience coefficient describes the chance that a particular person won’t follow their prescribed
disembarking method. These disobedient people are then randomly assigned a new priority value
ranging from 1 to the maximum possible priority value which varies depending on method. An
implementation of this on the previously given priority map can be seen in Fig 3.2.

5 10 15 20 25 30

Figure 3.2: Introduction of disobedience coefficient to the ideal heatmap in Fig 3.1

As in the boarding method, we accounted for the fact that many people travel in groups that
cannot be split. To implement this in the model, the priority of a group of size n is set to the mean

n
of each member’s priority in that group like so: Pyoup = 1—IL >° P,. The effect of this can be seen in
i=1

Fig 3.3. Note the group in row 32 (seats ABC).

Row A
Row B
Row C o [
Aisle
Row D 0 [ faid
Row E ;
RowF ™ —F—F—F—F—F—v 7+ 77777+

Figure 3.3: Introduction of groups to the heatmap in Fig 3.3
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3.2 Logic of Disembarking

The diagram to the right shows the logic of the disembarking. By looping through the unoccupied
aisle spots, and moving individuals into them, we can simulate the whole moving out. We considered
the movement in and out of aisles as well.

-

v

Did person have

2 E
Collectit  <-Yes— Do they have a bag? No—-o o or?

A

Yes
v
v
Was person
<—No - next spot moved from a
row?

Move them into
evacuated spot

Loop through aisle spots

> Is it empty?

A

Next spotin

« No v
aisle

Find adjacent person
with highest ‘priority’

N
o v

Is their internal
clock high Moy peec)

Yes—> into space

enough

Figure 3.4: A flow diagram of the disembarking algorithm from a passenger’s perspective

3.3 Time to Unstow Bags

Just as stowing bags during boarding blocks the aisle, the act of unstowing bags during disembarking
blocks the aisle too. The following formula is a variant of Eq 1 that simply changes n;;, . = Npins — 2.
This is done to avoid division by zero, since many overhead bins will have nyqgs = 6 as they are full.
Eq 1 accounts for the number of bags already in bins — it takes longer difficult to remove a bag out
of a packed luggage bin than an empty one. Note this nj;,, is simply labelled npins in Eq 1.

(

0 if Npags = 0
4 if n =il
Tbags(nbags; Mpinss 6) = < T 0-8(nbins — ]_)/6 kags — (4)
= + = if Npags = 2
[ 1= 0.8(72pins — 2)/6 1 — (npins — 1)/6 e

3.4 Optimal Disembarking Method

The optimal disembarking method for the narrow body aircraft was found to be disembarking from
back to front by row. This was initially surprising. However further analysis suggested it to be
the quickest due to it having the greatest aisle flow out of all methods. The rate of free aisle flow
hindered by retrieving baggage determines the rate people can enter the aisles and hence leave the
plane. Back to front results in the greatest aisle flow due to people feeding into the aisles from the
back of the plane. Should they need to retrieve a bag, they a) hold very few people up as they are
at near the end of the queue, and therefore hold very few people up and b) by them stopping, they
allow people in front of them flow into the queue meaning no gaps are left open.

This is opposite to the ‘front to back’ boarding method which is employed by most airlines and
is the slowest disembarking method. This is because when someone enters the aisle from the front
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Figure 3.5: Monte Carlo simulation graphs of various disembarking methods (1k trials)

of the aircraft and retrieve their bag they hold the whole queue up whilst not allowing anyone in
front of them to enter the queue as there is no one else in front.This back to front system would rely
on a ‘right of way’ approach to disembarking the plane, where people at the back have the highest
priority. When there is a space that two people could move into, the passenger at the front would
have to give way to the passenger coming from behind them.

Other notable disembarking methods were the Reversed WMA which grants priority to aisle-seat
passengers followed by middle then window seat. The Reversed WMA produces slower time than
Back to Front as more people enter the queue near the front of the aircraft and thus block the queue
as they retrieve bags. Reversed WMA is also impractical to implement as it requires a large degree
of coordination in comparison to the relatively simple Back to Front method which is a reverse of
the commonly used Front to Back Disembarking.

Disobedience Coefficient | Reverse WMA | Back to Front  Random
0 393 231 474.3
0.2 421.7 355 474.3
0.4 | 438.2 404.2 476.1
0.6 459.4 435.7 474.9
0.8 470.2 451 474.2
1.0 | 4749 474.1 474.7

Table 1: Sensitivity analysis of disembarking methods by scaling the disobedience coefficient

This table shows that as disobedience increases, the time taken to disembark decreases. At no
disobedience, we get fast disembarking times for reverse Wilma and back to front and at the maximum
disobedience we see the times being similar to a random boarding time. Importantly this table also
reveals that these models are very sensitive to disobedience especially back to front between 0 — 0.4.
It is important to note that despite back to front disobedience sensitive nature it still remains the
quickest at the assumed disobedience coefficent of 0.4. This also suggests the importance of airlines
employing methods to increase obedience when disembarking as a 20% reduction in disobedience
could cause up two minutes in extreme cases.
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People Not Retrieving Bags | Reverse WMA | Back to Front | Random
0.2 411.9 374.7 468.2
0.4 352.7 325.3 352.7
0.6 289.9 261.0 309.8
0.8 234.1 215.7 235.6
1.0 200.1 200.9 200.0

Table 2: Sensitivity analysis of disembarking methods by changing people not retrieving bags

Table 2 shows a steady trend where the boarding time decreases and tends towards a constant
time of 200s as the people not retrieving bags increases. This trend is important for two reasons.
Firstly, it shows that if airlines could reduce the amount of bags carried it would result in much
faster disembarking times, to the point it would no longer matter which disembarking method was
employed. This is because less bags mean the aisle is blocked for a reduced amount of time. Even
a minor increase in people not taking bags, for example from 40% to 60%, would result in a drastic
reduction in disembarking time of 30s. This could be achieved by encouraging passengers to retrieve
their bag in the period between when the plane lands and the disembarking process begins thus
increasing the amount of people not retrieving during the disembarking.

4 Extension of Model to Other Aircraft

4.1 Flying Wing Aircraft
4.1.1 Flying Wing Boarding

The Flying Wing Aircraft has a revolutionary seating plan with an additional
3 aisles and 18 seats across, but only 14 rows. To account for this, we built

upon the core algorithm of the narrow body in which passengers walk down g T
the aisle, by simulating all 4 aisles at once, with an additional aisle connecting ~ Aisle Jmmmm;
all of these at the top from the entrance. We initially considered simulating =

only one aisle and simply quartering the flow rate into the aisle. However, c

this is not realistic as the top aisle can still be blocked — for example, consider
the case where a passenger is stowing their luggage in row 1 of the first aisle,
whilst a passenger behind them waits to get into this aisle. Keeping with the o

assumption that only one passenger can fit into an aisle, such a scenario would 3
block passengers from accessing all other aisles, increasing total boarding time. '
Thus, we must simulate all aisles boarding at once. Furthermore, although the g
number of aisles in this plane may cause confusion about where to go, we 70
assumed that this would already be accounted for by the presence of flight Asig

x=E<

attendants, causing no passengers to walk down the wrong aisle.The extended
algorithm as experienced by a passenger is represented in the flow chart. A
visualization of this model nearing completion is also displayed. Note: the top
aisle is not included in this visualisation.

Different boarding models can be applied to the flying wing aircraft to dif-
ferent effect. Random and sectional boarding are relatively easily implemented,
and both would be theoretically and practically effective. However, our optimal boarding method for
the narrow body aircraft, the WMA method, is now rendered impractical to implement. When con-
sidering a seat block between two aisles, where ‘A’, ‘M’, and ‘W’ represent aisle, middle, and window
seats respectively. Translating into rows six seats wide, you get the pattern A—M—W-—W-—M—A.
It would be impractical for passengers to judge whether their seat is designated as A, M or W, even
without incorporating groups.

Figure 4.1: Flying Wing
model
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Figure 4.2: Flow diagram of passenger movement logic for the flying wing aircraft

Another potential boarding method we could adapt to a wide wing aircraft would be the modified
Steffen method. However, given the established impracticality of the modified Steffen method on
the narrow body, this would be even less realistic to expect passengers to follow it when the aircraft
is boasting multiple aisles. Thus, we disregarded this method for this plane type. This left us with
two viable boarding methods for the wing plane. These are shown in Fig 4.3, along with adjusted
WMA times. The mean result times from these boarding methods were 593.2 seconds for the back
to front time, 558.9 seconds for the random boarding, and 546.1 seconds for the adjusted WMA
boarding time.Despite this, the optimal boarding method is the section boarding, from back to front.
Despite having the lowest times, the impracticality of other solutions makes it the most attractive.
The closest in terms of overall effectiveness would be random boarding. However, the organisational
issues of trying to queue all the passengers in a random order with resulting in excessively large
queues would more than out weigh the megre 34.3 second boarding time advantage.

C of Wide Wing Methods

Method

M
RANDOM
WILMAWIgroups

Relative Frequency

Time (S)

Figure 4.3: Comparison of distribution of times for different methods on the Flying Wing aircraft.
Note that the mean lines for AFM, random and WMA are located at 546.1, 558.9 and 593.2
respectively.

4.1.2 Flying Wing Disembarking

The core logic of the priority disembarking model remains the same when
adapted to the Flying Wing Aircraft. The plane is broken into four sub-
aisles that passengers are able to move into, dependent on the priority logic.
Additionally a leaving aisle has been added that runs by all of the sub aisles.
Passengers are moved into and along this leaving aisle to the exit through the
use of the priority logic.

Widebody Disembarking Model
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Comparison of Wide Wing Disembarking Methods

Type
across
backtofrontrow
fronttobackrow
fronttobacksection

randomgroupadjusted

Relative Frequency

reversewilma

Time (S)

Figure 4.5: Comparison of disembarking methods on the flying wing aircraft

Similarly to the narrow body disembarking, models that prioritise aisle flow
will be the fastest in the flying wing aircraft. The most successful model was
the across method in Fig 4.4. The across method increased the priority assigned
to passengers the further they are from the door, with respect to row and seat.
This is in comparison to the ‘front to back’ disembarking method that only
increases priority across the row. The across method of distributing priority
resulted in the quickest disembarking times as it systematically emptied the
aircraft from the bottom right to top left of the diagram (with the exit in the
top left). This allowed most people to enter the aisle when they are few people
behind them (as the people behind have already left). This means there are
minimal aisle blockages when passengers retrieve bags, and passengers in front
of the blockage will be able to move into the aisle. The across method is quite
practical as it just requires for people to wait for the person behind to leave, or the person behind to
retrieve a bag hence allowing them to leave. Similarly to other disembarking models, this is a form
of ‘right of way system’, where people furthest from the door have right of way.

4.2 Two-Entrance Two-Aisle Aircraft
4.2.1 Two-Entrance Two-Aisle Boarding

The two-entrance two-aisle aircraft adds the complexity of multiple entrances, as well as a first-class
section. However, we made the following assumptions:

e The first-class section would board first, as is standard across airlines. Any late passengers
would interfere negligibly with the rest of the boarding process, as they do not walk down the
same aisles as the rest of the passengers

e Rows 12 to 26 (and first-class) would board from the front entrance, whereas rows 27 to 47
would board from the back

e All passengers would board from the correct entrance. In a similar reasoning to everybody
walking down the right aisle, we assumed that a plane of this size — and especially one with
first class — would have sufficient flight attendants to ensure that this did not happen.

Given these assumptions, a valid simplification can be made to the model: the total boarding time
would simply be the time taken to board first class, added to the greatest boarding time of the two
sections (seats accessed from entrance 1 and seats accessed from entrance 2) of the plane. Boarding
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methods in first class are unreasonable to implement in real life given the smaller number of seats,
but also the easier access to seats due to greater space. Thus, this time was calculated using the
random boarding method with increased speeds for walking and stowing luggage. The average was
found to beWe again tested this plane with unstructured (random) and sectional methods and our
proposed method of Wilma with groups (in this case, the middle seat does not exist). Once again,
Wilma with groups was found to be the most effective method.

Comparison of Two Aisle Boarding Methods

Method

AFM
RANDOM
Wilma with groups

Relative Frequency

Time (S) ‘

Figure 4.6: Comparison of boarding methods on the two-entrance two-aisle aircraft

4.2.2 Two-Entrance Two-Aisle Disembarking

The assumptions made in the boarding model of Two Entrance Two Aisle can be carried across to the
disembarking model. Consequently, simulation were run on both halves of the plane for disembarking
and the times were added to the time taken to board first class. Although disembarking occurs on
two aisles in this model, aisle flow is still valued and therefore models that increase aisle flow such
as back to front is still fastest with a mean time of 180s.

5 Pandemic Capacity Decrease

The COVID-19 pandemic has introduced many additional barriers to air travel. Notably, the passen-
ger capacity of aircrafts is forced to decrease to help combat the spread of the disease. We test and
present the effect on embarking and disembarking the three aircraft types when passenger capacity
is limited to 70%, 50% and 30%. We ran 1000 test cases for all aircraft at all capacity levels with
the three most optimal methods, the averages for which can be found in the appendix.

5.1 Boarding

An important consideration is that it is not simply random what tickets are not for sale on an aircraft
with reduced capacity. Instead, they are chosen to maximise social distancing. For capacity ¢ each
row with numbers of seats s, we allowed a maximum of [c X s] seats to be filled in that row (where
[z] is the ceiling function), and reduced passengers randomly from there on until the number of
passengers reached c¢. However, groups are still allowed to sit with each other. An analysis of the
data would suggest that for both the Narrow Body and Flying Wing aircraft, the Wilma with groups
method remains preferable up until a capacity of 50%. At this value its efficiency is only marginal.
However, beyond this it becomes optimal to board by section (aft then middle then front). This
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can be explained in practice, as at lower numbers of passengers, there is lesser chance of someone
blocking the way to a seat — the main problem with sectional boarding. Therefore, without this
problem, filling up from the back allows the most passengers to enter the queue at once, resulting
in being more optimal. For the Two Entrance Two Aisle aircraft, sectional boarding also quickly
becomes the most This method has the added benefit of splitting passengers into boarding groups
that also sit together, meaning that although contact cannot be completely avoided, it is minimized
to be with the same people. If the pandemic is at the point that capacities of 50% or below need to be
enforced, then this is a valuable aspect. Therefore, we would recommend this method for capacities
of 50% and below on all aircraft. For capacities of 70% and 100%, the original recommended method
remains the most optimal (this is still sectional for the Two Entrance Two Aisle aircraft).

5.2 Disembarking

To model reduced capacity of disembarking, we assumed a similar dispersal of passengers as in
boarding. For all three aircraft, back to front remained the quickest method of disembarking no
matter the capacity. Unfortunately, this does not preserve the social distancing between differing
sections of the plane as achieved by boarding. However, at low capacities, disembarking times between
different methods became exceedingly quick (under 2 minutes) and closer together. It would be no
huge cost to the aircraft to favour a slower method at these capacities. Thus, at low capacities which
aim to contain Covid, we would recommend a front to back method. Although this has not been
modelled, by extrapolating data for modelled methods, it is clear that this would still be done in a
tight timeframe.

6 Evaluation of Models

6.1 Strengths

e Adaptable. Not only can our models be used for many different boarding and disembarking
methods, but our models can be adapted to wide range of plane shapes and sizes, that could
consist of multiple aisles or entrances, with relative ease.

e Comprehensive. Our models take into account a wide range of factors affecting boarding and
disembarking times, such as people moving past each other within rows, or time taken to stow
and retrieve luggage. These times are calculated using real life data, ensuring the highest
accuracy.

e Realistic. Many online models may have the strengths above, but fail to account for many
common behaviours, such as people disobeying boarding instructions and passengers travelling
together in groups.

6.2 Limitations

e Memory intensive. Due to boarding/disembarking being a stochastic process, a large number
of test cases are needed to obtain an accurate average for any given scenario. Our model is
bulky.

e Large number of assumptions made. For ease of simulation, we assumed many things, ranging
from a constant walking speed down the aisle, or that passengers would always sit in the correct
seat or walk down the correct aisle to their seat. In reality, this will not always be the case.
To improve our model, we could include these factors in our simulation.
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Letter to Executive

Dear Airline Executive,

Through analysis of boarding and disembarking methods, our team has developed a model that
has allowed us to determine the optimal boarding and disembarking methods for a variety of differ-
ent aircraft, with a number of different restrictions.

One consideration when deciding boarding methods is the impact that it will have on family groups.
It is vital that we avoid splitting these groups when boarding to ensure all passengers have a positive
travelling experience with you. Another factor that affects loading times is the number of passengers
that don’t follow boarding methods.

We found that three main factors that contribute to the time take to board an aircraft. The first of
these is the walking speed of the passengers. However, there is not much that can realistically be
done about this. Secondly, there is the time taken to stow overhead luggage. While passengers are
doing this, they are blocking the aisle. Another aisle blockage comes passengers try to get to seats
that are blocked by other passengers in same row.

These impact of these aisle blockages can be minimised by the chosen boarding method, and also
by several different techniques. These include ensuring that people follow the boarding method (po-
tentially through regulation from air stewards), and also by making more easily accessible overhead
storage, to minimise time spent retrieving stowed luggage.

That being said, method choice is an easy was to immediately speed up passenger boarding/dis-
embarking. In a standard narrow body aircraft, passengers should be boarded with the adjusted
WMA method (window seats board first, followed by middle seats and then aisle seats, but groups
board together), and should disembark giving the right of way to passengers coming from the back.
Both methods minimise aisle blockages, and allow optimal aisle flow.

In a wide wing aircraft, the optimal boarding method is by section (back to front). This fastest
method that can be practically implemented. To disembark, we recommend the ‘across’ method,
similar the method for a narrow aircraft, where passengers furthest from the door get right of way.
For the 2 aisle, 2 entrance aircraft, the recommended methods are the same as the narrow body:
adjust WMA for boarding and back to front for disembarking. We hope these recommendations and
explanations will aid you in running your airline, and look forward to your feedback.
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