For office use only
\qquad
T2 \qquad
T3 \qquad
T4

Team Control Number
2023001 IMMC

For office use only
F1
F2 \qquad
F3
F4

2023

The International Mathematical Modeling Challenge (IM ${ }^{2}$ C) Summary Sheet

To Build or Not To Build: Determining a Quantitative Metric for Land Planning and Allocation

Summary

Land planning is crucial to ensure that urban development occurs with consideration to the economic, social, and environmental interests of a community. To adhere to optimal land planning, many conflicting factors must often be considered. In this paper, our team makes a quantitative decision metric that can analyze these factors and determine the "best" choice from a given set of development options, as well as the allocation of those choices.

First, linear programming is used to determine two "best" development options: one that maximizes both economic and social factors, and one that minimizes negative environmental factors while maximizing social. The maxima and minima from linear programming are then applied to the Technique for Order of Preference by Similarity to Ideal Solution to obtain a third real-world "overall best" option that balances economic and environmental factors with a desired weighting. Genetic algorithm is then used to determine the optimal positioning of the three established "bests" via an analysis of opportunity costs based off of an environmental degradation penalty index. Finally, the Cobb-Douglas Function is used to conduct a short- and long-term analysis of each result's profit by solving differential equations with regard to inflation.

This model is then applied to the parcel of land in Victory, NY, using data obtained from research. The ideal option and positioning is found to be 267 acres of sports complex in the northern half of the land, $\mathbf{1 2 9}$ acres of regenerative farm directly west of the sports complex, $\mathbf{3 4 4}$ acres of solar array in the southernmost region of the land, and $\mathbf{1}$ acre of agritourist centre on the eastern side of the land.

Conducting a sensitivity analysis on our model reveals that the linear programming results are most affected by the area and societal benefit restrictions, but that the TOPSIS results remain relatively stable regardless of the changing of parameters.

Our model is then adjusted to account for Micron Technology, Inc. building a fabrication facility nearby. As this facility brings more jobs and thus more people, the profit of facilities that involve tourism will increase. However, due to pollution caused by the facility, nature-based facilities will suffer detriments. With these adjustments, the model is re-run, and the results are compared to the previous results. In this scenario, there would be a greater area of the solar array and agritourist centre, a smaller sports complex, no regenerative farm, and $\mathbf{1 2 8}$ acres of ranch.

Finally, the generalizability of our model is discussed by first discussing its application in Shenzhen, China, and then widening the scope to any location in any country. We conclude that our model will provide the most implementable results in rural environments due to its quantitative nature that cannot consider complicated urban planning laws, but that the model can be applied to nearly any scenario as long as data is provided.
Keywords: Linear Programming, TOPSIS, Genetic Algorithm, Cobb-Douglas Function, Differential Equation

LETTER TO DECISION MAKERS

April 2023 | New York, USA

Dear Decision Makers,

Our team has now arrived at a recommendation for the best use of the land in Victory, NY, obtained through a quantitative mathematical model. The model is extremely comprehensive and arrived at its conclusion after a thorough consideration of profit, environmental degradation, carbon emissions, employment, attraction of tourism, recreational offers, and societal benefits.

From our summary sheet, you are likely already aware of our recommended distribution for the land. The image to the right hopefully provides further clarity on that recommendation.

This recommended distribution balances environmental and economic factors in a 1-to-2 ratio. If you were to follow our model's recommendations exactly, your annual profit would be \$9,047,920 USD and the annual CO2 emissions of the finished land developments would be -1,095 tons. Year-by-year profit analysis, including best- and worst-case scenario analyses according to inflation and efficiency, are shown on the graph above. As can be seen, this recommendation can be trusted economically; even the worst-case scenario returns millions in profit by 50 years, and in a best-case scenario, you will be able to make over 250 million in profit at the 50-year mark.

It is worth noting that both the solar array and agritourist center appeared multiple times in our model's recommendation. This did not change whether the model was told to prioritize environmental factors or economic factors, and the pattern remained even when Micron Tech's fab was taken into consideration. Because of this, we highly recommend building at least a solar array and agritourist center on the land according to the recommendations.

This summarizes the most pertinent conclusions of our team and our model. Whatever your final decision is regarding this land, we hope you will be able to make an easier decision knowing what the numbers say.

Thank you for your trust in us.
Sincerely,
1 Introduction
Content
2 Preliminary Assumptions and Definitions 1
2.1 Variable Definitions 1
2.2 Assumptions 2
3 Task 1: Creating the Model 2
3.1 Initial Research 2
3.2 Criteria Identification 3
3.3 Linear Programming for Preliminary Planning 4
3.3.1 Economic 4
3.3.2 Environmental 4
3.4 TOPSIS for Working Model 5
3.4.1 Introduction to TOPSIS 5
3.4.2 TOPSIS in Our Model 5
3.5 Genetic Algorithm (GA) for Application 6
3.5.1 Process of Genetic Algorithm 6
3.5.2 Application of Genetic Algorithm 8
3.6 Short- and Long-term Considerations 8
4 Task 2: Application and Sensitivity Analysis 9
4.1 Data Collection 10
4.2 The "Best" Option 10
4.2.1 Linear Programming Results 10
4.2.2 TOPSIS Results 11
4.2.3 Genetic Algorithm Results 11
4.2.4 Short- and Long-term Results 14
4.3 Sensitivity Analysis 14
4.3.1 Sensitivity Analysis of Linear Programming 14
4.3.2 Senstivity Analysis of TOPSIS 16
5 Task 3: Re-evaluation for Micron Tech., Inc. 17
5.1 Affected Factors 17
5.1.1 Change in Facility Profit 17
5.1.2 Change in Restrictions 17
5.2 New Plan 18
6 Task 4: Generalizability 18
6.1 Familiar Contexts 19
6.2 Land in Other Countries 20
7 Conclusion and Evaluation 20
7.1 Evaluation of Strengths and Weaknesses 20
7.2 Conclusion 20
References 21
Appendix A Substantiating Tables and Data 22
Appendix B All learning Curves and Final DNA of Genetic Algorithm 23
Appendix C Genetic Algorithm Code 26
Appendix D Genetic Algorithm DNA Graph Code 31
Appendix E Linear Programming Code 33
Appendix F TOPSIS Code 34

1 Introduction

To build, or not to build: that is the question that plagues land planners and decision makers day and night (and tomorrow, and tomorrow, and tomorrow). Regional planning is an extremely important aspect of land planning, and its importance has only increased in recent years as urban sprawl continues to grow [3]. On top of this, growing awareness over issues like climate change has caused land planners to become more mindful of how they design their plans, as well as what they should take into account during the design process. With this in mind, community leaders and business planners have consulted us to help decide the "best" use of a $3 \mathrm{~km}^{2}$ (741.316 acres) parcel of land 50 km away from Syracuse.

In this paper, we begin by creating a model to determine the "best" development option. Research is conducted to determine economic, environmental, and social criteria/sub-criteria with influence on development options. These variables are then applied in linear programming, TOPSIS, and genetic algorithm to create the base model. Next, by doing further research and collecting data, the model is applied to the parcel of land in New York. Sensitivity analysis is also conducted on the model to test the adaptability and reliability of its result.

We then explain how our model will be affected by the Micron Tech., Inc. fabrication facility being built not too far from the parcel of land. A new set of calculations are also performed for this scenario. Finally, the generalizability of our model is evaluated by discussing how it would perform in both an environment familiar to our team (Shenzhen, China) and in other international contexts.

Figure 1 Flow Chart of Process

2 Preliminary Assumptions and Definitions

2.1 Variable Definitions

Table 1 Variable Definitions

Notations	Descriptions	Notations	Descriptions
P	Annual profit	O_{i}	Facility i^{\prime} s employment index
A_{i}	Attraction index of facility i	E	Annual carbon emission
R_{i}	Facility i^{\prime} s recreational index	S_{i}	Facility i 's societal service index
$\alpha_{i}^{p r}$	Annual profit of facility i	x_{i}^{A}	Area of facility i
$\epsilon_{i}^{c e}$	Annual carbon emission of facility i	x_{b}	Highest annual profit possible
y_{b}	Least annual carbon emission possible	h	Developers' desired weighting
$A_{s i}$	Facility s^{\prime} s area in land type i	F	Fixed cost
n	Number of Facilities	A_{j}	Area of facilities in land type j

2.2 Assumptions

Assumption 1: The "best" development option can be determined via purely quantitative means. This assumption is the basis of our model and also greatly simplifies it. Additionally, there are already many diverse quantitative measures available to employ in modelling, so limiting the factors used to quantitative ones will still provide a comprehensive result.

Assumption 2: All global, local, and environmental developments in the near and far future will not suddenly change and will remain relatively predictable. This includes extreme weather phenomena, sudden tragedies, and unforeseen economic and political changes. The nature of these things makes them unpredictable and rare, and therefore difficult - and arguably unnecessary due to their rarity - to model.

Assumption 3: The available budget for initial development is 50 million USD. Looking at land in and around Syracuse, even if we take the lower averages, this plot of land should cost far more than 50 million USD. Additionally, many of these development options require lots of money to build. Since these options have been considered by the decision-makers, it is reasonable to assume that we have at least 50 million USD to put towards developing this plot of land.

Assumption 4: The developments to be done on this land have been given the green light by the appropriate party (i.e. local or state government, permit association, etc.). Nearly all of the possible development options require some sort of building permit, development permit, or a similar green light. Thus, for the sake of being able to consider all of these options in our model, we assume that all possibilities have already received the necessary permits.

Assumption 5: The placement of land types is visually distinguishable and is as indicated in the provided satellite map. For the sake of simplicity and straightforwardness, we assume that the land types correspond with the visual cues in the satellite map; i.e., flat-looking yellow-green is cropland, an uneven patch of green is forest, etc.

Assumption 6: The best use of a cross-country skiing trail during the rest of the year is as a hiking trail. Cross-country skiing being only available for 3 months of the year gives this option a huge disadvantage, causing it to be automatically neglected by nearly any quantitative model. Thus, to level the playing field, we assume that the trail is open during the non-winter months as a hiking trail.

3 Task 1: Creating the Model

This task requires us to create a quantitative decision metric that can define the "best" use of the land. [6] To do this, we use a combination of linear programming, TOPSIS, and genetic algorithm:

- Linear Programming - Used to obtain the maxima and minima of criteria [13]. We first use research to identify the most important criteria (in other words, the criteria that affect the development options the most). Then, formulae and restrictions are created to model these criteria in a standardized, quantitative way.
- TOPSIS - We apply the maximum and minimum from linear programming to deduce the best overall alternative in TOPSIS [11]. By plotting each development option into the model and measuring distances between each option and the best/worst case, a "best" option (the option that is closest to the best case) is revealed.
- Genetic Algorithm - Used to determine the distribution and location of facilities determined in TOPSIS [9]. We invite the three "best" options (highest performing overall and by environmental and economic criteria) to participate in genetic modelling. Thus, the most ideal distribution for the land is finalized, and the "best" plan for the land is also finalized.

3.1 Initial Research

To conduct research, the sources consulted are largely government or official sources when possible (either Syracuse, New York State, or US National). If this is not possible, we look for data from relevant sources, such as solar panel companies for solar array information. Our data sources are listed in Table 2.

Table 2 Data Sources and Uses

Information	Source	Site
Agricultural data: income, income:land trend	US Department of Agriculture	$\mathrm{https}: / / w w w$. usda.gov
Geographical and Environmental data	City of Syracuse	https://www.syr.gov/Home
Economic information	Observatory of Economic Complexity (OEC)	https://oec.world
Solar Array information	LG Corporation	https://www.lg.com/global
income statistics	Forbes Finance Council	https://www.forbes.com
Agriculture finance information	Office of the New York State Comptroller	https://www.osc.state.ny.us
Carbon Emissions data	New York Academy of Sciences	https://hyaspubs.onlinelibrary.wiley.com
Agritrst, cross-country ski and crop info	Ontario Ministry (OMAFRA)	http://omafra.gov.on.ca

From this research, seven factors stand out as criteria that would affect the determination of the "best" development option: profit, employment opportunities, attraction of tourism, carbon emissions, environmental degradation, recreational offers, and societal benefits.

3.2 Criteria Identification

The final determined criteria can largely fit into three main categories: economic, environmental, and social, as is shown in Figure 2.

Figure 2 Quantitative Criteria

- Economic Factors:

- Profit: Referenced by P. This includes the profit generated by all facilities while extracting the cost required to produce goods or services with respect to time and area coverage.
- Employment Opportunities: Referenced by O_{i}. This is an evaluative index on the employment opportunities provided by land development i.
- Attraction of Tourism: Referenced by A_{i}. This is an evaluative index on the tourist and resident attraction value of development i. An increase in the attraction will certainly be a booster to the local and possibly even the state economy.
- Enviromental Factors:
- Carbon Emissions: Referenced by E. It is essential to minimize carbon emissions because they contribute to climate change that poses a significant threat to the environment, economy, and human societies worldwide.
- Environmental Degradation: Referenced by E_{W}, E_{F}, E_{D}, and E_{C}. This is a penalty-based index utilized in the genetic algorithm. It considers the effect of biodiversity reduction, soil erosion, and all forms of pollution on each land type.

- Social Factors:

- Recreation: Referenced by R_{i}. Citizens' enjoyment will also matter in this deciding factor. Some facilities offer recreational activities, while others do not. That will affect the locals' acceptance of the facilities and thus affect aspects such as attraction of tourism and employment opportunities.
- Societal Benefits: Referenced by S_{i}. Other than recreation, there are also other facilities that a society yearns, might that be education, clean water, nutritious crops, or other similar aspects.

3.3 Linear Programming for Preliminary Planning

In the first step of this model, linear programming is used to incorporate criteria that can be modelled linearly. These criteria can be either objective functions to be maximized or minimized, or restrictions on those functions. The variables involved are assumed to be continuous. The resulting solution is definitive and represents the best possible solution, given the available resources and restrictions imposed.

To facilitate the chosen criteria in linear programming, social factors are incorporated into restrictions on economic and environmental. In other words, they are not independent objective functions that need to be optimized.

3.3.1 Economic

In modelling the aforementioned economic criteria in linear programming, the profit should be maximized. The development option that yields the highest economic results should be the "best" in that aspect, as it would have the highest profit, provide the most employment opportunities, and attract the most tourists and residents.

$$
\begin{array}{r}
\max P=\sum_{i=1}^{n}\left(\alpha_{i}^{p r} \times x_{i}^{A}\right) \\
\text { s.t. }\left\{\begin{array}{l}
\sum_{i=1}^{n} x_{i}^{A} \leq 741.316 \\
\sum_{i=1}^{n} S_{i} \times x_{i}^{A} \geq 3000 \\
\sum_{i=1}^{n} R_{i} \times x_{i}^{A} \geq 2000 \\
\sum_{i=1}^{n} O_{i} \times x_{i}^{A} \geq 4500 \\
\sum_{i=1}^{n} A_{i} \times x_{i}^{A} \geq 1500
\end{array}\right. \tag{2}
\end{array}
$$

where P is the profit; $\alpha_{i}^{p r}$ is the annual profit of facility $i ; x_{i}^{A}$ is the area of facility i in acres; S_{i} is the societal index of facility $i ; R_{i}$ is the recreational index of facility $i ; O_{i}$ is the employment opportunity index of facility i; and A_{i} is the tourism and residence attraction index of facility i.

Restriction Explanation

- $\sum_{i=1}^{n} x_{i}^{A} \leq 741.316:$ As a basic measure, the first restriction placed on this confirms that the facility does not exceed the available area of land.
- $\sum_{i=1}^{n} O_{i} \times x_{i}^{A} \geq 4500$ and $\sum_{i=1}^{n} A_{i} \times x_{i}^{A} \geq 1500$: Restrictions are also written to ensure that employment opportunities $\left(O_{i}\right)$ and attraction of tourism $\left(A_{i}\right)$ are sufficient enough to provide tangible economic benefits.
- $\sum_{i=1}^{n} S_{i} \times x_{i}^{A} \geq 3000$ and $\sum_{i=1}^{n} R_{i} \times x_{i}^{A} \geq 2000$: Finally, the societal factors are incorporated into the restrictions. $\sum_{i=1}^{n} S_{i} \times x_{i}^{A} \geq 3000$ sets the bar for societal benefits to the local community, and $\sum_{i=1}^{n} R_{i} \times x_{i}^{A} \geq 2000$ for recreational opportunities.

3.3.2 Environmental

The environmental criteria - only carbon emissions in this case - should be as low as possible (i.e. minimized) to deduce the "best" option under this criteria.

$$
\begin{equation*}
\min E=\sum_{i=1}^{n}\left(\epsilon_{i}^{c e} \times x_{i}^{A}\right) \tag{3}
\end{equation*}
$$

$$
\text { s.t. }\left\{\begin{array}{l}
\sum_{i=1}^{n} x_{i}^{A} \leq 741.316 \tag{4}\\
\sum_{i=1}^{n} S_{i} \times x_{i}^{A} \geq 3000 \\
\sum_{i=1}^{n} R_{i} \times x_{i}^{A} \geq 2000
\end{array}\right.
$$

where E is the annual carbon emission of the land model in $k g$; and $\epsilon_{i}^{c e}$ is the annual carbon emission of facility i in $\mathrm{kg} \cdot$ acres $^{-1}$.

Restriction Explanation

Because there is only one environmental factor being modelled with linear programming, the restrictions are comprised of only

- $\sum_{i=1}^{n} x_{i}^{A} \leq 741.316$ the basic area restriction, and
- $\sum_{i=1}^{n} S_{i} \times x_{i}^{A} \geq 3000$ and $\sum_{i=1}^{n} R_{i} \times x_{i}^{A} \geq 2000$, the societal restrictions, as described previously.

3.4 TOPSIS for Working Model

With a finished linear programming model, we can begin to use TOPSIS to create a working model that can define the one "best" alternative.

3.4.1 Introduction to TOPSIS

TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) [2] is a multi-criteria decisionmaking method used to evaluate the best alternative from a set of available options. It is based on the assumption that the best alternative is the one that has the shortest distance from the positive ideal solution (i.e. the best alternative that maximizes the criteria) and the longest distance from the negative least ideal solution (i.e. the worst alternative that minimizes the criteria).

To apply the method, a set of criteria is first defined. Weights are then assigned to each criterion based on the criterion's relative importance. Then, a matrix including each alternative and criterion is constructed. The matrix is also normalized to account for differences in the scale of the criteria. Finally, the distance between each alternative and the best and worst solutions is measured, and the alternatives are ranked based on their closeness to the positive ideal solution.

3.4.2 TOPSIS in Our Model

The TOPSIS model in this report will be done on a 2D coordinate plane, with the x-axis measuring annual economic profit and the y-axis measuring annual carbon emissions, as calculated in the linear programming section.

1. Normalization: The x value x_{b} represents the highest annual, and the y value y_{b} represents the least annual carbon emission. It must also be considered that the range of profits could be drastically different from the range of carbon emissions. To standardize the relationship between the two, the environmental value will be modified (multiplied by r) to emulate the former.

$$
\begin{equation*}
\frac{\left|x_{b}\right|}{\left|y_{b}\right|}=r \tag{5}
\end{equation*}
$$

2. Weighting: To weigh the economic and environmental factors according to their influence, the economic aspect will also be adjusted to be h times that of the environmental, if the decision maker so wishes (if not, then $h=1$). This is proposed to account for the fact that each stakeholder will have different beliefs as to which factors are more important in determining the "best" development option.
3. Best and Worst: Taking into account these preliminary factors, a formula is created to determine the best (positive ideal) and worst (negative least ideal) possibilities I_{b} and I_{w}, respectively:

$$
\begin{equation*}
I_{b}=\left(x_{b}\left|h \times \max (P), y_{b}\right| r \times \min (E)\right), \quad I_{w}=\left(x_{w}\left|h \times \min (P), y_{w}\right| r \times \max (E)\right) \tag{6}
\end{equation*}
$$

4. Candidates Selection: To reduce the time complexity of the model, 19 points are then manually determined, of which we believe at least one must be the best option. These points are set on a spectrum, ranging from heavily considering environmental factors ($5: 95 \%$) to heavily considering economic factors ($95: 5 \%$). The 19 points $\left(x_{\omega}, y_{\omega}\right)$ are each determined using another linear programming system that combines economics and environment considerations.

$$
\begin{align*}
\max \sum_{i=1}^{n} x_{i}^{A} & \left(h \times \omega \times \alpha_{i}^{p r}-r \times(1-\omega) \times \epsilon_{i}^{c e}\right) \tag{7}\\
\text { s.t. } & \left\{\begin{array}{l}
\sum_{i=1}^{n} x_{i}^{A} \leq 741.316 \\
\sum_{i=1}^{n} S_{i} \times x_{i}^{A} \geq 3000 \\
\sum_{i=1}^{n} R_{i} \times x_{i}^{A} \geq 2000 \\
\sum_{i=1}^{n} O_{i} \times x_{i}^{A} \geq 4500 \\
\sum_{i=1}^{n} A_{i} \times x_{i}^{A} \geq 1500
\end{array}\right. \tag{8}
\end{align*}
$$

where $\omega \in\{0.05,0.1,0.15, \ldots, 0.95\}$. From the aforewritten formulae, the calculation for x_{ω} and y_{ω} can be formed:

$$
\begin{equation*}
x_{\omega}=h \times \sum_{i=1}^{n} x_{i}^{A} \alpha_{i}^{p r}, y_{\omega}=r \times \sum_{i=1}^{n} x_{i}^{A} \epsilon_{i}^{c e} \tag{9}
\end{equation*}
$$

5. Distance Calculation: Finally, with x_{ω} and y_{ω}, distance calculations - the defining aspect of TOPSIS begin. Using the distance formula, the distance between development option ω at $\left(x_{\omega}, y_{\omega}\right)$ and the ideal and least ideal possibilities are calculated as

$$
\begin{equation*}
d_{\omega w}=\sqrt{\left(x_{\omega}-x_{b}\right)^{2}+\left(y_{\omega}-y_{b}\right)^{2}}, \quad d_{\omega b}=\sqrt{\left(x_{\omega}-x_{w}\right)^{2}+\left(y_{\omega}-y_{w}\right)^{2}} . \tag{10}
\end{equation*}
$$

6. Judging Index Calculation: Both distance calculations are repeated for all 19 manually-determined points established above. After the process is finished and results are recorded, a judging index s_{ω} is created based on the distance of point each point $\left(x_{\omega}, y_{\omega}\right)$ from the ideal and least ideal possibilities:

$$
\begin{equation*}
s_{\omega}=\frac{d_{\omega w}}{d_{\omega w}+d_{\omega b}}, 0 \leq s_{\omega} \leq 1 . \tag{11}
\end{equation*}
$$

Note that $s_{\omega}=1$ if and only if the option is exactly the ideal alternative, and $s_{\omega}=0$ if and only if the option is exactly the least ideal alternative.
7. Ranking: All results are taken and ranked according to s_{ω}, and the highest ranking overall option is chosen along with the highest-performing economic and environmental options from linear programming to participate in the next step, genetic algorithm (GA).

3.5 Genetic Algorithm (GA) for Application

Next, the positioning of each facility must be calculated. This is because, although the maximum profit of different facilities have now been shown, it is still necessary to evaluate their placement for minimum environmental damage according to the environmental degradation criteria determined in Section 3.2.

3.5.1 Process of Genetic Algorithm

GA is a type of optimization algorithm that uses a heuristic search technique, finding the optimal solution to a given problem by mimicking the process of natural selection and evolution. Genetic algorithm goes through the following steps to achieve this:

- Initialization: First, a possible solution (the initial instance) is found and fed to the program in the form of "DNA", a binary sequence indicating all the required input, just like all the other generations. The DNA data is a string that constrains all variable subject to change,
- Conversion: The binary sequence in the DNA is converted to decimal variables, and fitted across the range of all possible data.
- Selection: The "fitness" of the DNA is evaluated based on how successful it is in solving the objective function. If the DNA sequence has a high fitness value, it gets a higher chance to survive and reproduce the next generation of offspring.
- Reproduction: This is done through crossover, where one parent selected according to fitness has its DNA replaced at random points by another randomly selected parent.
- Mutation: During this process, mutations may occur by arbitrarily choosing a DNA bit from a child and reverting it.
- Repetition until convergence: The steps described above are repeated for a fixed number of generations (at which point the final-generation child with the highest fitness is selected), or indefinitely until the satisfactory solution is found.

GA is particularly suitable for problems that involve non-linear objective functions and large solution spaces, and the detail of GA is shown in Algorithm 1.

```
Algorithm 1: Genetic Algorithm for Finding Best Solution
    Input: An instance \(\delta\), DNA length \(\beta\), reproduction rate \(\alpha\), mutation rate \(\gamma\), population size
        \(\sigma\), generation number \(\omega\)
    Output: Fittest DNA string found \(P_{\text {best }}\)
    // Initialize
    Objective function \(\mathrm{OF}(\mathrm{x})\), Current Population \(P\), Current Fitness \(F\);
    Generate \(\sigma\) DNA genes, each being 60 bytes long, and save them to \(P\);
    for \(i \leftarrow 0\) to \(\omega\) do
        // Calculate Fitness
        for \(j \leftarrow 0\) to \(\sigma\) do
            \(F[j] \leftarrow O F(P[j]) ;\)
        // Selection according to Fitness
        for \(j \leftarrow 0\) to \(\sigma\) do
            Choose DNA \(P[\theta]\) with replacement Rwithprobability \(F[\theta] / \sum_{k=0}^{\sigma-1} F[k] ;\)
            Randomly choose DNA \(P[\kappa]\) with replacement;
            // Reproduction
            if randint \(\in[0,1] \leq \alpha\) then
                Randomly choose \(k\);
            set \(P[\theta][k] \leftarrow P[k][k] ;\)
        // Mutation
        for \(j \leftarrow 0\) to \(\sigma\) do
            for \(k \leftarrow 0\) to 60 do
                if randint \(\in[0,1] \leq \gamma\) then
                    Revert \(P[j][k]\) from 0 to 1 or from 1 to 0 ;
    // Return
    return \(P_{\text {best }} \leftarrow \max F_{i}\);
```


3.5.2 Application of Genetic Algorithm

To simplify the model, we put the map into a flat Cartesian coordinate system. Assume that the point at the bottom left corner of the map is the origin point $(0,0)$, and the top right corner will be $(20,17.5)$. Hence, each unit of land is calculated to be equal to $\frac{\text { Area }_{\text {land }}}{\text { Areaplane }}=2.709$ acres of land.

Since the profit of the facilities is constant with the calculated area of TOPSIS, the genetic algorithm will focus on an aspect called opportunity cost. Opportunity cost is defined as the loss of potential gain from other alternatives when one is chosen. In our model, this cost is a number between 0 to 30 , with a lower number indicating a more precious environment.

The opportunity cost [10] of each land type is formed by 3 different aspects - Pollution, Soil Erosion, and Biodiversity. Each has their specific environment cost (except shrubs, which will not be considered due its mere one percent coverage). E_{W} represents the environmental cost of wetland; E_{F} of forest; E_{D} of developed land; and E_{C} of crop land.

The objective function - the fitness evaluator - is as follows:

$$
\begin{gather*}
\max \sum_{m \in \mathcal{S}} A_{m} E_{m} \tag{12}\\
\text { s.t. }\left\{\begin{array}{l}
\left|x_{s i}-x_{s j}\right| \geq \frac{\Delta x_{s i}+\Delta x_{s j}}{2} \\
\left|y_{s i}-y_{s j}\right| \geq \frac{\Delta y_{s i}+\Delta y_{s j}}{2} \\
\left(x_{s i} \pm \Delta x_{s i}, y_{s i} \pm \Delta y_{s i}\right) \in M \\
\left(x_{s i} \pm \Delta x_{s i}, y_{s_{i}} \mp \Delta y_{s i}\right) \in M
\end{array}\right. \tag{13}
\end{gather*}
$$

where m is the land type; s is the type of facility; k_{s} is the number of facility $s ; A_{s} i$ refers to the area of facility s in land type $i ; \mathcal{S}$ is the set of $\{W$ etland, Forest, Developed, Crop $\}$; and $\left(x_{s i}, y_{s i}\right),\left(x_{s j}, y_{s j}\right)$ is the center of the facilities (assuming all facilities are rectangular with sides parallel to either the x -axis or y -axis). Note that in programming, the input is taken in the bottom left corner, and the center is then calculated by adding half of the height and width. $\Delta x_{s i}$ is the width of the rectangle and $\Delta y_{s i}$ is the length; and $A_{W}, A_{F}, A_{D}, A_{C}$ refers to the area of facilities in wetland, forest, developed area, and cropland, respectively.

Restrictions Explanations

- $\left|x_{s i}-x_{s j}\right| \geq \frac{\Delta x_{s i}+\Delta x_{s j}}{2}$ and $\left|y_{s i}-y_{s j}\right| \geq \frac{\Delta y_{s i}+\Delta y_{s j}}{2}$ ensure that the facilities do not overlap with each other, and
- $\left(x_{s i} \pm \Delta x_{s i}, y_{s i} \pm \Delta y_{s i}\right) \bigcup\left(x_{s i} \pm \Delta x_{s i}, y_{s i} \mp \Delta y_{s i}\right) \in M$ ensures that the facilities lie inside the map.

The detail of the results is further explained in Section 4.2.3, and the complete code for GA is demonstrated in Appendix C.

3.6 Short- and Long-term Considerations

To incorporate the short-term and long-term into consideration, we focus on total profit, which is equal to the total production value minus the total cost. In other words, the total profit of a certain distribution of facilities will be equal to the total cost of maintenance subtracted from the value of all goods produced in a year. Thus, to find total profit, the equation

$$
\begin{equation*}
T_{p}(t)=P(t)-C(t) \tag{14}
\end{equation*}
$$

is used, where $T_{p}(t)$ is the total profit; $P(t)$ is total production value accumulated through t years; and $C(t)$ is total cost accumulated through t years.

- Total Production: The total production value can be measured by the convolution of the Cobb-Douglas production function [8] and an exponential function:

$$
\begin{equation*}
P(t)=Y(t) *(1+\alpha)^{t}=\int_{0}^{t} Y(u)(1+\alpha)^{t-u} \mathrm{~d} u \tag{15}
\end{equation*}
$$

where α is the rate of inflation. $Y(t)$ is the Cobb-Douglas production function

$$
\begin{equation*}
Y(t)=A \times L(t)^{g} \times K(t)^{j} \tag{16}
\end{equation*}
$$

where A is the efficiency constant; g and j are economic constants. The efficiency constant is a measure of total factor productivity. The economic constant measures the output elasticity (percentage change of output) of capital and labour.
Additionally, $L(t)$ is the total labour with respect to time, where labour is the working time. $L(t)$ can be expressed as

$$
\begin{equation*}
L(t)=-\frac{a\left(L_{i}-L_{0}\right)}{t+a}+L_{i} \tag{17}
\end{equation*}
$$

where a is the labour constant; L_{0} is the total hours of labour at $t=0 ; L_{i}$ is the total hours of labour at $t=\infty$.
$K(t)$ is the total capital with respect to time, which can be expressed as

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} K}{\mathrm{~d} t}=r\left(1-\frac{K}{K_{i}}\right) K \tag{18}\\
K(0)=K_{0}
\end{array}\right.
$$

where r is the growth constant; K_{0} is the total hours of labour at $t=0$; and K_{i} is the total hours of labour at $t=\infty$. The growth constant is a measure of the speed at which facility construction is completed.
From this, the solution to the function is concluded to be:

$$
\begin{equation*}
K(t)=\frac{K_{i}}{1+\left(\frac{K_{i}}{K_{0}}-1\right) e^{-r t}} \tag{19}
\end{equation*}
$$

- Total Cost: The total cost consists of the fixed cost (cost to build) and the accumulated operating cost (cost of maintenance and operations). The operating cost can be measured by the convolution of a logarithmic function and an exponent function. The total cost function $C(t)$ is:

$$
\begin{equation*}
C(t)=F+\log (b t+1) *(1+\alpha)^{t}=F+\int_{0}^{t} \log (b u+1)(1+\alpha)^{t-u} \mathbf{d} u \tag{20}
\end{equation*}
$$

where F is the fixed cost; and b is a constant.

- Total Profit: Plug all functions $K(t)$ and $C(t)$ into the main function, and the result will be:

$$
\begin{equation*}
T_{p}(t)=A \int_{0}^{t}\left(-\frac{a\left(L_{i}-L_{0}\right)}{t+a}+L_{i}\right)^{g}\left(\frac{K_{i}}{1+\left(\frac{K_{i}}{K_{0}}-1\right) e^{-r t}}\right)^{j}(1+\alpha)^{t-u} \mathrm{~d} u-F-\int_{0}^{t} \log (b u+1)(1+\alpha)^{t-u} \mathbf{d} u \tag{21}
\end{equation*}
$$

From this, the function can be graphed and visualizations can be made for the short-term and long-term profit fluctuation based on labour input, capital input, inflation rate, and fixed cost. The numerical solution and the detail of results are further explained in section 4.2.4.

4 Task 2: Application and Sensitivity Analysis

We first revisit the sources listed under Section 3.1 and gather concrete data to incorporate into the finished model. From this, the "best" options out of those listed by the decision-makers are determined using linear programming and TOPSIS. Their positioning is also calculated using genetic algorithm. The short- and long-term profit analysis is then applied on the genetic algorithm results. Finally, a sensitivity analysis is conducted on our model to evaluate its reliability and the sensitivity of the results.

4.1 Data Collection

Using the sources listed in Table 2, we determined concrete numbers for each variable and each development option. Our final master data table with all of these values can be seen in Table 3.

Table 3 Data of Different Facilities

Measurement	Sports Comp.	Ski/Trail	Crop F.	Ranch	Regen. F.	Sol. Arr.	Agritrst Cn.	Agrvltc F.
$P_{j}\left(\$ \cdot a c r e^{-1}\right)$	9038.46	254.9	179.28	562.51	319.30	19155.41	3999.91	215.09
$E_{j}\left(k g \cdot a c r e^{-1}\right)$	200	50	-25	500	-20	-3330	-2	-2030
O_{i}	9.5	1.0	7.5	8.5	8.5	2.5	9.0	7.5
A_{i}	9.5	8.0	1.0	1.0	1.5	1.0	7.0	1.0
S_{i}	3.0	4.0	8.0	9.0	9.0	3.0	6.0	7.0
R_{i}	10.0	9.0	1.0	2.0	2.0	1.0	9.0	2.0

The Employment Opportunity Index O_{i}, Tourism Attraction Index A_{i}, Societal Benefit Index S_{i}, and Recreational Index R_{i} are all determined manually as a number from 1.0 to 10.0 via a thorough analysis of all available sources on each respective topic. The environmental degradation penalties E_{W}, E_{D}, E_{F}, and E_{C} are also determined using this method. The exact values can be seen in Table 14. Additionally, the carbon emission data E_{j} are all rounded to the nearest integer.

4.2 The "Best" Option

The data described above are applied to the linear programming systems defined in Section 3.3, the TOPSIS process in Section 3.4, and the genetic algorithm introduced in Section 3.5. In this way, the "best" land development options and their distribution and positioning are determined.

4.2.1 Linear Programming Results

Using the linear programming systems defined in Section 3.3 and the data described in Section 4.1, results for the economic and environmental criteria are calculated.

The optimal result with maximum annual profit, at $\$ 9079$ 300, can be seen in Table 4; and the optimal result with minimum annual carbon emissions, at -1869100 kg , can be seen in Table 5. These two results will advance to be employed in the genetic algorithm analysis.

The calculated minima for both economic and environmental have also been listed in these two tables. The two minima are used to calculate the least ideal possibility in TOPSIS.

Table 4 Economic Max./Min. Facilities (\$9079300 and \$144090 in Annual Profit)

Facilities	Sports Comp.	Ski/Trail	Crop F.	Ranch	Regen. F.	Sol. Arr.	Agritrst Cn.	Agrvltc F.
Economic Ideal $($ acres $)$	267	0	0	129	0	344	1	0
Economic Least Ideal (acres $)$	0	158	579	0	0	0	0	0

Table 5 Environmental Min./Max. Facilities (-1869100kg and +351000kg Annual CO ${ }_{2}$ Emissions)

Facilities	Sports Comp.	Ski/Trail	Crop F.	Ranch	Regen. F.	Sol. Arr.	Agritrst Cn.	Agrvltc F.
Environment Ideal (acres)	0	0	0	0	0	510	147	84
Environment Least Ideal (acres)	65	0	0	676	0	0	0	0

4.2.2 TOPSIS Results

These results are then applied to the TOPSIS model described in Section 3.4. We first set r to 4.86 to standardize the relationship between environmental and economic based on the ranges found in the data.

$$
\begin{equation*}
\frac{\left|x_{b}\right|}{\left|y_{b}\right|} \approx 4.86 \tag{22}
\end{equation*}
$$

h is also set to 2 , making the final ratio/weighting between environmental to economic factors $1: 2$. This is because we believe that, although environment is a very important factor, comparing solely carbon emissions to the entirety of all the economic benefits would be an unfair comparison. There are 3 economic factors and 1 environmental, so a 1-env. to 2-econ. weighting would best reflect our beliefs.

With r as 4.86 and h as 2 , the coordinates of the ideal possibility are $\mathbf{A}_{\mathbf{b}}=(\mathbf{1 8 1 5 8 6 0 0},-\mathbf{9 0 8 3 8 2 6})$ and the coordinates of the least ideal possibility are $\mathbf{A}_{\mathbf{w}}=(\mathbf{2 8 8 1 8 0}, \mathbf{1 7 0 5 8 6 0})$.

Next, the 19 manually determined points are plotted into TOPSIS and ranked according to ω, the result of which can be seen in Table 6 below.

Table 6 Alternatives According to Judging Index s_{ω}; ranked best-worst

Weighting	$0.95-0.45$ Econ.	0.4 Econ.	$0.35-0.25$ Econ.	0.2 Econ.	$0.15-0.1$ Econ.	0.05 Econ.
Index ω	0.463650	0.457908	0.457321	0.431908	0.431316	0.430778

The top performing development option from TOPSIS, which will be modelled in GA along with the two aforementioned results from linear programming, can be seen in Table 7. This option, with an annual profit of $\$ 9047920$ and annual CO_{2} emissions of -1094700 kg , is found at 0.95-0.45 Econ.

Table 7 Distribution of Top Option, according to TOPSIS

Facilities	Sports Comp.	Ski/Trail	Crop F.	Ranch	Regen. F.	Sol. Arr.	Agritrst Cn.	Agrvltc F.
Best Option (acres $)$	267	0	0	0	129	344	1	0

4.2.3 Genetic Algorithm Results

We then use the genetic algorithm to determine the positioning of facilities for each of the three ideal results. This is done by following the GA process as is described in Section 3.5.

Figure 3 The Annotated and Plotted Map of All Land Types

- Cartesian coordinate system: The map is first plotted in the 2D Cartesian plane. The placement and area of each land type is assumed from the given satellite map view and outlined using rectangles.

The distribution of each land type except forest is as follows; the forest is the remainder of the area. A limitation of this approach is the inability to accurately note the environment with rectangles, especially when this map isn't very visually distinguishable.
The tables in Appendix A specify the exact (x, y) coordinates of each rectangle's diagonal vertices.

- Initialization: As described in Section 3.5.1, all inputs are fed to the genes in the form of DNA which, in our instance, contains the lower left corner and width of the rectangles. This is the only information needed to calculate the length of the rectangle with its area predetermined.
- Conversion: In this model, the DNA is 60 bits long. It is separated into 12 sections, each with a length of 5, storing data up to 31 . The first 4 sets of 5 (the first 20) manifest the x coordinate of the rectangle's bottom left vertex. The second 20 are similar but for y; and the last 20 are indications of the width of each facility.

Figure 4 An Example of DNA String

- Objective Function Constraints:

- No Overlaps: The overlapping area function is created in accordance with the restrictions described in Section 3.5.2 ensuring that facilities do not overlap with each other. To follow the restriction, the code will ensure the overlapping area between two rectangles is 0 . The overlapping area code can be seen in lines [31~49] of Appendix C.
- No out-of-bounds: To ensure that land developments lie within the boundary, new restrictions are set to ensure:
(a) the lower left corner of a facility does not exceed the hypotenuse of the lower left triangle;
(b) the upper right corner does not exceed the hypotenuse of the upper right triangle.

Both triangles are shown in pink in Figure 3. To incorporate this into the objective function, two linear inequalities are used. Let (x, y) be the lower left corner, A be area, and w be width. This gives the equation of the lower left hypotenuse as $y=\frac{-8.5}{6} x+8.5$ and the equation of the upper right hypotenuse as $y=\frac{-7.5}{4.5} x+44.33333$. The constraints are thus:

$$
\begin{align*}
y & \geq \frac{-8.5}{6} x+8.5 \\
y+\frac{A}{w} & \leq \frac{-7.5}{4.5}(x+w)+44.33333 \tag{23}
\end{align*}
$$

If any of the constraints are not met by a string of DNA, then it is immediately abandoned with its fitness set to 0 . Otherwise, if a string of DNA meets all of the constraints, its fitness value is calculated according to the objective function (see line [84~224] of Appendix C).

- Objective Function: Table 14 lists the values of the environmental degradation penalties E_{W}, E_{D}, E_{F}, and E_{C} to be employed in the objective function. To maximize the fitness of the DNA, the environmental degradation factor should have an inverse relationship with the preciousness of the environment. Thus, the environmental factor is $30-$ total.
- Selection, Reproduction, and Mutation: DNA sequences then undergo the process of Genetic Algorithm as written in Section 3.5. Their code appears in Appendix C.
- Additional Variable - Occupation Rate: Since TOPSIS grants the ratio between areas, there is one more variable called occupation rate that must be decided by the decision makers. This variable dictates the proportion of the total land area the development is going to occupy. Let this variable be named γ. Then:

$$
\begin{equation*}
A_{\text {cordinate }}=A_{\text {acres }} \times 2.709 \gamma \tag{24}
\end{equation*}
$$

- Application: The initial instance is generated in two ways, either randomly generated or hand-drawn. With a lower occupation rate, random generation will be faster; but, when the occupation rate is 0.5 or higher, hand-drawing will be more efficient. To verify and debug the initial and final DNA, the facilities are graphed according to the DNA string (see Appendix B).
GA also relies on user inputs to determine the size of the DNA (choice and justification described above), population, crossover rate, and more. These are all determinate factors to the success of the generation since the genetic algorithm only promises the maximum to the highest extent of convergence given the user inputs. The user inputs used in our instance are listed below.

Table 8 User Inputs

DNA size	Population	Cross Rate	Mutation Rate	Generations	width/x/y bounds
60	1000	0.8	0.002	400	$[1,20][0,20][0,17.5]$

- Results: With the aforementioned user inputs, the genetic algorithm runs across three different occupation rates throughout the three different models of facilities proposed by TOPSIS and linear programming.

Table 9 Resulting Fitness of All 3 Cases, calculated via objective function

Occupation rate	TOPSIS Best	Economic Best	Environmental Best
0.4	1620.07338413	1246.89606331	1530.62376101
0.5	1899.65084277	1473.23451274	1761.06401523
0.6	2020.18783949	1455.66527764	1996.19740878

The distribution of facilities on the land, as calculated from the TOPSIS Best option at an occupation rate of 0.5, is provided in Figure 5. The result's DNA string, graph, and converted DNA, among others, are listed in Table 10. Similar maps and tables can be seen for the rest of the results in Appendix B. The overall evaluation of the proposed land planning and allocation is in Figure 6.

Figure 5 Map of GA Best Option with 0.5 Occupation Rate

Figure 6 Evaluation Result

Table 10 DNA-related Data of TOPSIS Best Option with 0.5 Occupation Rate

Occupation rate	Fitness	Best DNA string	Learning Curve	Converted DNA string in the form of [x, y, width]
0.5	1899.7	$\begin{array}{llllllll} 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & & & \end{array}$		Sports Complex:[7.7, 7.9, 5.2] Regen. Farm: [0.0, 11.9, 7.7] Solar Array: [6.5, 0.0, 12.9] Agritourist C.: [19.1, 8.5, 0.6]

4.2.4 Short- and Long-term Results

After applying all the obtained data into Equation (21) in Section 3.6, the function of total profit is:

$$
\begin{equation*}
T_{p}(t)=A \int_{0}^{t}\left(-\frac{500}{t+10}+50\right)^{0.3}\left(\frac{30}{1+\left(\frac{30}{2.6}-1\right) e^{-t}}\right)^{0.7}(1+\alpha)^{t-u} \mathrm{~d} u-30-\int_{0}^{t} \log (12 u+1)(1+\alpha)^{t-u} \mathbf{d} u \tag{25}
\end{equation*}
$$

where α is the inflation rate and A is the efficiency constant that measures the ratio of output and input of labour and capital, respectively. In figure 7, the projected futures include three varieties: best-case, expected, and worst-case futures. These projections are determined by adjusting the aforementioned constants (A and $\alpha)$.

Figure 7 The Projected Future
In the short term, profits for all cases will be negative as construction costs must be covered, but the production value is limited due to less labour and capital input. However, in the long term, profits will grow from inflation rates and high production value. Better case scenarios project higher profits.

The best-case scenario predicts that fixed costs will be covered in year 15, resulting in a total profit of 43 million by year 25 and 261 million by year 50 . The expected future, calculated using the most likely inflation and efficiency values, forecasts that fixed costs will be covered in year 16, leading to a total profit of 28 million by year 25 and 138 million by year 50 . In the worst-case scenario, fixed costs won't be covered until year 42 , and the total profit will be 7 million by year 50 . Despite this, however, the results of the model are considered dependable profit-wise because even the worst-case scenario yields a positive total profit within 50 years.

4.3 Sensitivity Analysis

Sensitivity analysis must be conducted to assess the degree of uncertainty and variability and to identify the parameters that have the greatest impact on the results. This information can then be used to refine the model, optimize its parameters, or identify areas where further data collection may be needed.

4.3.1 Sensitivity Analysis of Linear Programming

There are two aspects that can be tested and manipulated to conduct a sensitivity analysis [4] of linear programming: tight constraints [1] and shadow price [7].

Tight restrictions refer to constraints that are met with equality in the objective value, thus limiting it. The restrictions in linear programming will always form a convex polygon, and the objective function is, in essence, another line on the coordinate plane. To obtain the most optimal value, the objective function will always intersect the polygon at one of its corners. Tight restrictions are the inequalities, which, when plotted on the coordinate plane, form the corner intersected by the objective function. On the other hand, loose restrictions are those that do not influence the result whatsoever. Nonetheless, the polygon might shift in shape, thus altering the tight or loose status of the restrictions.

Shadow price refers to the change in the objective value that results from a change in the range of the tight restrictions. As previously mentioned, tight restrictions are those that form the corner that will be intersected by the objective function to reach the optimal solution. Thus, any change in their range will result in a return value dependent on the magnitude of the change.

Figure 8 Linear Programming Demonstration in 2D; image taken from [5]
Tight constraints and shadow price are calculated for both the environmental and economic linear programming systems. First, for the environmental linear programming system, there are three restrictions tested as tight constraints. They are as follows:

1. the basic area restriction $\sum_{i=1}^{n} x_{i}^{A} \leq 741.316$;
2. the societal benefit index restriction $\sum_{i=1}^{n} S_{i} \times x_{i}^{A} \geq 3000$;
3. the recreation index restriction $\sum_{i=1}^{n} R_{i} \times x_{i}^{A} \geq 2000$.

As is shown in Figure 9, the sensitivity analysis graph for the area restriction shows a linear decrease in the range observed (67.5% to 132.5%), suggesting that as the restrictive range increases, the carbon emissions decrease. At 67.5%, the restrictions oppose each other, making further optimization impossible.

The sensitivity analysis graph for societal benefit restrictions is piece-wise, comprising three distinct regions with different slopes. The slope of 0 at the first part (50% to 74.5%) indicates a loose restriction before 74.5%. The second part's positive slope indicates the return value from a percentage increase is unfavorable. The third phase has a steeper slope, demonstrating a more unfavorable return value.

The sensitivity analysis graph for recreational opportunity restrictions is also piece-wise, with an almost unnoticeable increase in the slope at the 140.5% point. Overall, it demonstrates unfavourable return values for percentage increases in the constraining constant.

Figure 9 Sensitivity Analysis and Shadow Prices for Environmental Linear Programming System
In the economic linear programming system, the restrictions tested as tight constraints include:

1. the basic area restriction $\sum_{i=1}^{n} x_{i}^{A} \leq 741.316$;
2. the societal benefit index restriction $\sum_{i=1}^{n} S_{i} \times x_{i}^{A} \geq 3000$;
3. the third restriction, which is not recreation index, but rather the employment opportunity index restriction $\sum_{i=1}^{n} O_{i} \times x_{i}^{A} \geq 4500$.

As can be seen in Figure 10, these graphs almost exactly mirror the shadow price graphs of the environmental tight constraints. Where decreases were seen previously, increases are seen here, and vice-versa. However, there are still a few exceptions.

- In the societal restriction of the economic section, the graph exhibits a longer second phase with a steeper slope in addition to a smoother transition from phase 2 to 3 .
- The economic employment opportunity sensitivity graph is utterly distinct from the environment's recreation restriction. This graph has a slope of 0 from 50% to 69.5%, indicating a loose restriction status there. After that, however, it has a sustained slope inside the observed range, with a direct relationship between the decrease in profit and the increase in the constraining constant.

Figure 10 Sensitivity Analysis and Shadow Prices for Economic Linear Programming System
In conclusion, to reduce carbon emissions, either societal or recreational constraining constants should be decreased, or area constraining constants should be increased. To increase profits, societal and employment opportunity constraining constants should be decreased, or area constraining constants should be increased. However, adjusting these factors would reduce the respective benefits provided by the land.

4.3.2 Senstivity Analysis of TOPSIS

One of the most significant uncertainty factors in TOPSIS model is the land developer's opinion on the weighting factor between the environment and the economy, which is assumed to be 0.33 Env. :0.66 Econ. in our model.

To test and analyze the sensitivity of the model proposed, the weighting factor is changed from (0.2 : $0.8) \sim(0.8: 0.2)$, increasing by increments of $(+0.1:-0.1)$.

However, although the judging indexes changed, the overall ranking never changed drastically. Most notably, the first two choices stayed the same throughout, as can be seen in Figure 11. This demonstrates the reliability and stability of TOPSIS and, thus, the reliability and stability of its suggestion of the "best" land development option.

Figure 11 TOPSIS Result Fluctuation Under Distinct Weighting

5 Task 3: Re-evaluation for Micron Tech., Inc.

In October 2022, it was announced that Micron Technology, Inc. will build a large semiconductor fabrication facility (fab) in Clay, a town just north of Syracuse. The fab is projected to bring with it many more jobs, and thus many more people. To account for the changes that this fab brings to the local community, we re-evaluate affected criteria and re-run our model based off of this.

5.1 Affected Factors

The question announces the establishment of a new large semiconductor fabricator(fab) near the land being modelled, which is expected to have a significant impact on local employment, production value, and tourism attraction. To comprehensively assess the impact of the new fab on our metrics, one needs to carefully consider these factors' influence on the data and model.

Figure 12 Affected Factors

Figure 13 Adjusted Profits

5.1.1 Change in Facility Profit

- Solar array: Solar array heavily relies on the requirement of energy in the local community. The introduction of the fab will increase the demand for energy, thereby increasing the profit of solar arrays.
- Crop farms; agrivoltaic farms; regenerative farms; and ranch: As food quality plays a decisive factor in Americans' selection for food, the newly built fab will significantly decrease the profit of these facilities as the demand for the product reduces.
- Sports Complex, Cross-country ski/trail: Both of these facilities' profit relies heavily on attraction and the living conditions of their local community. As this fad is estimated to introduce 49,000 more jobs with a high annual salary of over $\$ 100,000$, a significant rise in profit can be predicted.
- Agritourist center: Agritourist center's resultant influence is a double-edged sword. The introduction of fab boosts its tourism attraction while decreasing the demand for its agricultural goods.

Table 11 Estimated Adjustment to the Facility Profit, Contrast in Figure 13

Measurement	Sports Comp.	Ski/Trail	Crop F.	Ranch	Regen. F.	Sol. Arr.	Agritrst Cn.	Agrvltc F.
$P_{j}\left(\$\right.$ acre $\left.^{-1}\right)$	$13557.69 \uparrow$	$382.43 \uparrow$	$161.35 \downarrow$	$509.26 \downarrow$	$287.37 \downarrow$	$21070.95 \uparrow$	$3999.91-$	$193.58 \downarrow$

5.1.2 Change in Restrictions

Many restrictions in the linear programming systems are based on the land's property. With the introduction of the fab, some of these factors need to be reconsidered.

- Employment Index Restriction Removed: As this new fab introduces 9000 direct jobs with 100,000 annual salaries and more than 40,000 indirect jobs, the restriction for the employment index $\sum_{i=1}^{n} O_{i} \times$ $x_{i}^{A} \geq 4500$ can be removed.
- Tourism Attraction Index Restriction Reduced: This fab greatly increases tourism and resident attraction, so the attraction index limit is reduced to 1000. $\sum_{i=1}^{n} A_{i} \times x_{i}^{A} \geq 1000$

5.2 New Plan

Using the same linear programming and TOPSIS with minor changes to the models discussed above, one could determine the ideal environmental, economical, and overall.

Table 12 Proposed Plan in the Presence of the Fab

Facilities	Sports Comp.	Ski/Trail	Crop F.	Ranch	Regen. F.	Sol. Arr.	Agritrst Cn.	Agrvltc F.
Environment Ideal (acres)	0	0	0	0	0	$510-$	$147-$	$84-$
Economic Ideal (acres)	$123 \downarrow$	0	0	$128 \uparrow$	$0 \downarrow$	$487 \uparrow$	$3 \uparrow$	0
Overall Ideal (acres)	$123 \downarrow$	0	0	$128 \uparrow$	$0 \downarrow$	$487 \uparrow$	$3 \uparrow$	0

Economic Ideal and Overall Ideal:

- Annual profit: $\$ 12006300 \uparrow$
- Annual Carbon Emission: - 1533120kg \downarrow

Environment Ideal:

- Annual profit: \$11350400 -
- Annual Carbon Emission: - 1869100kg-

With the given TOPSIS statistics, Genetic Algorithm can calculate the optimal placements of the facilities as is shown in Figure 14. For specific data, see Appendix B Table 21)

Figure 14 Distribution of Facilities With Fab
In conclusion, with the introduction of the new fab that brings forward many opportunities and change, the annual profit will see a significant rise of over 30% and the annual carbon emission of over 45%. However, alongside these benefits is a decrease in the environmental degradation index of 11%.

6 Task 4: Generalizability

The most distinct aspect of this piece of land lies in the fact that the land is in a rural environment. This means that there are far fewer restrictions around the use of the land, which allows purely mathematical
modelling to approach an answer that is far more applicable in real life. Thus, in considering the generalizability of this model, one must also keep in mind that this model will be the most realistically applicable in rural environments due to its very nature.

6.1 Familiar Contexts

(Note: The land in New York will be called "original"; our familiar land will be called "new".)
Some of our team members have ancestry in Shenzhen, China, so Shenzhen will be used as the familiar context in discussing this model's applicability. The new land can be seen below, under Figure 15. It is $3 \mathrm{~km}^{2}$ in size and lies roughly 26 km east of the city center. Many new considerations exist for this plot, as can be seen in Table 13.

Table 13 Affected Criterias

Factor	Change(s)
Pop. Density	Adjust restrictions for P, O_{i}, A_{i}
Climate	Remove cross-country skiing option
Landscape	Adjustments to genetic algorithm and land distribution
Urbanization	Restrictions around development size and emissions

Figure 15 New Land in Shenzhen

- Population Density: The population of Shenzhen is far greater than that of Syracuse, with 12.59 million for the former and 0.15 million for the latter [12]. As was the case in Task 3, more people means that developments that attract people will increase in profit, and developments that don't will decrease. Restrictions around P, O_{i}, and A_{i} should be adjusted accordingly.
- Climate: The climate in Shenzhen is subtropical, whereas the climate around Syracuse is continental [12]. This has implications for any building types that include outdoor requirements. Additionally, a subtropical climate makes it impossible for cross-country skiing to be viable at all.
- Landscape: The original plot was only somewhat close to certain freshwater lakes and had five different land types: forest, crop, wetland, developed and shrub. The new plot, however, is very close to the South China Sea, and has three land types: forest, wetland, and developed. The genetic algorithm must be modified to consider only these three land types, and changes must be made to accommodate the new percentage distribution of each.
- Urbanization: Since the new land is so close to the Shenzhen city center, it will be heavily influenced by urban planning. New restrictions should be placed around the maximum size of a given development, and social factors R_{i} and S_{i} should be adjusted to reflect the different needs and wants of an urban society. Restrictions around carbon emissions E should also be tighter, to reflect the increased seriousness of pollution in cities.

6.2 Land in Other Countries

When considerations are expanded to an international level, many of the same parallels remain. As long as considerations and adjustments are made to reflect the characteristics of the plot of land (such as urban/rural setting, climate, landscape, and unique factors), our model can be applied and will be able to present a solution. This reflects the versatility of linear programming: as long as variables are related in a linear fashion, the model will produce results.

7 Conclusion and Evaluation

7.1 Evaluation of Strengths and Weaknesses

Strengths

- Linear programming allows maximizing of the land's potential within given constraints, ensuring that the output is as ideal as possible. The simplex algorithm is also highly efficient, drastically reducing the time needed to calculate.
- TOPSIS provides a straightforward method for finding an optimal solution when distinct or even conflicting criteria are present and require a desired weighting factor.
- Genetic algorithm is powerful due to its ability to perform a global search, even in complex and nonlinear search spaces. It also tends to converge to a good solution thanks to the diversity maintained within the population.

Weaknesses

- Linear programming is limited to problems with linear and continuous relationships between decision variables and the objective function. Additionally, it is highly sensitive to input data, so small differences in data can result in significant changes in output.
- While TOPSIS assumes normalized data without outliers, outliers can still affect rankings and lead to incorrect conclusions. Furthermore, because it requires the selection of a weighting factor, TOPSIS results introduce subjectivity, making them less reliable objectively.
- Genetic algorithms can be time-consuming, requiring a large number of function evaluations to find a good solution, leading to severe time complexity. Additionally, they can get stuck in local optima, where the algorithm finds a suboptimal solution that is better than its neighbours but not the global optimum.

7.2 Conclusion

The objective of this paper is to develop a comprehensive, quantitative approach for determining the optimal planning and allocation of land. Our team achieves this by proposing a base mathematical model that integrates linear programming, TOPSIS, and genetic algorithm. This model considers seven factors that belong to either economic or social benefits, or environmental detriments. Furthermore, a short and longterm analysis model incorporating key factors like inflation, labour cost, and operating cost is included to evaluate the time-based feasibility of plans proposed by the base model. Results show that the model is successful in determining the most optimal planning and allocation of land, even in unfamiliar situations, such as new fabrication facilities built nearby or densely populated urban areas. A sensitivity analysis also reveals the stability of TOPSIS results and possible approaches to further enhance each criteria in linear programming. These findings demonstrate the versatility and applicability of the proposed approach in a variety of contexts, as well as its reliability in producing results.

References

[1] Richard Battye, Bjoern Garbrecht, and Adam Moss. Tight constraints on f-and d-term hybrid inflation scenarios. Physical Review D, 81(12):123512, 2010.
[2] Majid Behzadian, S Khanmohammadi Otaghsara, Morteza Yazdani, and Joshua Ignatius. A state-of the-art survey of topsis applications. Expert Systems with applications, 39(17):13051-13069, 2012.
[3] Edward J Blakely. Urban planning for climate change. 2007.
[4] H Christopher Frey and Sumeet R Patil. Identification and review of sensitivity analysis methods. Risk analysis, 22(3):553-578, 2002.
[5] Wikimedia Commons. File:linear optimization in a 2-dimensional polytope.svg - wikimedia commons, the free media repository, 2022. [Online; accessed April-2023].
[6] Juan Ángel Demerutis and Magdalena Vicuña. Urban and regional planning in latin america and the caribbean. The Routledge Handbook of Urban Studies in Latin America and the Caribbean, pages 357-382, 2023.
[7] Jean Drèze and Nicholas Stern. Policy reform, shadow prices, and market prices. Journal of public economics, 42(1):1-45, 1990.
[8] Tomás J Havránek. Cobb-douglas production function. In Dictionary of Ecological Economics, pages 71-71. Edward Elgar Publishing, 2023.
[9] Seyedali Mirjalili and Seyedali Mirjalili. Genetic algorithm. Evolutionary Algorithms and Neural Networks: Theory and Applications, pages 43-55, 2019.
[10] Stephen Palmer and James Raftery. Opportunity cost. Bmj, 318(7197):1551-1552, 1999.
[11] Jason Papathanasiou, Nikolaos Ploskas, Jason Papathanasiou, and Nikolaos Ploskas. Topsis. Multiple Criteria Decision Aid: Methods, Examples and Python Implementations, pages 1-30, 2018.
[12] Jianfa Shen. Urban growth and sustainable development in shenzhen city 1980-2006. Open Environmental Sciences Journal, 2(1), 2008.
[13] Robert J Vanderbei et al. Linear programming. Springer, 2020.

Appendix A Substantiating Tables and Data

Table 14 Environmental Degradation Penalties

	Wetland	Developed	Forest	Crop
Biodiversity	8	1	9	2
Soil Erosion	7	0	10	2
Pollution	9	0	8	1
Total	24	1	27	5
E Factor	6	29	3	25

Table 15 Developed Coordinates

lower-left vertex	higher-right vertex
$(3.5,1.5)$	$(5,4)$
$(11.5,0.5)$	$(12.5,2)$
$(0,14)$	$(0.5,15)$
$(5.5,13.5)$	$(7,15)$
$(19,7)$	$(20,11)$
$(16,15)$	$(17,16.5)$

Table 16 Crop Land Coordinates

lower-left vertex	higher-right vertex
$(0,3.5)$	$(3.5,10)$
$(5,0)$	$(9,4)$
$(4.5,7)$	$(6,8.5)$
$(7.5,7)$	$(11,10.5)$
$(4,12.5)$	$(5,15)$
$(14.5,0)$	$(19,5)$
$(17.5,8)$	$(19,10)$

Table 17 Wetland Coordinates

lower-left vertex	higher-right vertex
$(3.5,4)$	$(5,6.5)$
$(8,12)$	$(11.5,18.5)$

Appendix B All learning Curves and Final DNA of Genetic Algorithm

Occupation rate	Fitness	Best DNA string	Learning Curve	Converted DNA string in the form of $[x, y, w i d t h]$
0.4	1620.1	$\left\lvert\, \begin{array}{lllllllll} 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & & & & \end{array}\right.$		Sports Comp. [5.8, 7.3, 5.2] Regen. F. [0.0, 9.0, 3.2] Sol. Arr. [6.5, 0.0, 12.9] Agritrst Cn. [16.1, 7.3, 3.2]
0.5	1899.7	01101000 00010101 10010111 01010100 00001111 01000011 00101000 0001		Sports Comp. [7.7, 7.9, 5.2] Regen. F. [0.0, 11.9, 7.7] Sol. Arr. [6.5, 0.0, 12.9] Agritrst Cn. [19.1, 8.5, 0.6]
0.6	2020.2	01101000 00010101 10110110 01000000 00001111 01001010 00101000 0011		Sports Comp.[8.4, 6.8, 5.8] Regen. F. [0.0, 9.0, 5.2] Sol. Arr. [6.5, 0.0, 12.9] Agritrst Cn. [17.4, 8.5, 1.9]

Table 18 Further DNA-related Data of the TOPSIS Overall Best option with 0.4-0.6 Occupation Rate

Occupation rate	Fitness	Best DNA string	Learning Curve	Converted DNA string in the form of $[x, y$, width]
0.4	1246.9	01110000 00101100 10100000 01000000 00000000 00110101 00001110 1001		Sol. Arr.[0.0, 9.0, 12.9] Agritrst Cn. [14.2, 0.0, 4.5] Agrvilc F. [6.5, 0.0, 5.8]
0.5	1473.2	01111010 00000011 00000010 10010010 00000000 00101101 10111100 1111		Sol. Arr. [5.2, 2.3, 14.2] Agritrst Cn. [0.6, 9.0, 19.4] Agrvilc F. [10.3, 0.0, 9.7]
0.6	1455.7	$\begin{array}{lllllllll} 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & & & & \end{array}$		Sol. Arr. [5.2, 2.3, 14.8] Agritrst Cn. [3.9, 10.7, 7.7] Agrvltc F. [12.3, 11.9, 4.5]

Table 19 Further DNA-related Data of the Economic best option with 0.4-0.6 Occupation Rate

Occupation rate	Fitness	Best DNA string	Learning Curve	Converted DNA string in the form of $[x, y$, width $]$
0.4	1530.6	$\begin{array}{llllllllll} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & & & & \end{array}$		Sport Comp. [2.6, 6.2, 10.3] Ranch [0.0, 13.0, 10.3] Sol. Arr. [6.5, 0.0, 12.3] Agritrst Cn. [8.4, 10.2, 1.3]
0.5	1761.1	00100000 00010100 00000101 01011000 00011010 10000100 01100110 0010		Sports Comp. [2.6, 5.6, 10.3] Ranch [0.0, 12.4, 11.0] Sol. Arr. [6.5, 0.0, 12.3] Agritrst Cn. [0.0, 14.7, 1.3]
0.6	1996.2	10110010 01000010 01100000 00000101 11001101 01001010 11100010 0011		Sports Comp. [14.2, 0.0, 5.8] Ranch [5.8, 0.6, 7.1] Sol. Arr.[0.6, 7.9, 11.0] Agritrst Cn. [3.9, 7.3, 1.9]

Table 20 Further DNA-related Data of the Environmental best option with 0.4-0.6 Occupation Rate

Occupation Cases	Fitness	Best DNA string	Learning Curve	Converted DNA string in the form of [$\mathrm{x}, \mathrm{y}, \mathrm{width}$]
$\begin{aligned} & \text { Environmen } \\ & \text { tal } \\ & 0.5 \end{aligned}$	1374.6	01100000 01001001 10000001 00111001 00100000 00100101 01100000 0101		Sol. Arr. [0.6, 7.9, 13.5] Agritrst Cn. [2.6, 5.1, 10.3] Agrvltc F.[15.5, 0.0, 3.2]
Economic / All 0.5	1684.1	$\begin{array}{lllllllll} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & & & & \end{array}$		Sports Comp. [1.3, 12.4, 10.3] Ranch [0.0, 9.0, 20.0] Sol. Arr. [6.5, 0.0, 12.3] Agritrst Cn. [5.2, 11.9, 9.7]

Table 21 Further DNA-related Data of different best option with 0.5 Occupation Rate with the addition of factory

Appendix C Genetic Algorithm Code

Table 22 Appendix Code of GA Processes

GA Process	Code Lines
Objective Function	$[84 \sim 224]$
Conversion	$[230 \sim 244]$
Natural Selection	$[247 \sim 254]$
Reproduction	$[257 \sim 262]$
Mutation	$[265 \sim 269]$

Visualize Genetic Algorithm to find a maximum point in a function.

```
import numpy as np
import matplotlib.pyplot as plt
DNA_SIZE = 5 * 3 * 4 # DNA length
POP_SIZE = 1000 # population size
CROSS_RATE = 0.8 # mating probability (DNA crossover)
MUTATION_RATE = 0.002 # mutation probability
N_GENERATIONS = 400
length_bound = [1, 20] # x upper and lower bounds
x_bound = [0, 20]
y_bound = [0, 17.5]
# Python program to find total area of two
# overlapping Rectangles
# Returns Total Area of two overlap
# rectangles
def binary_to_decimal(binary_string):
    decimal = 0
    for i in range(len(binary_string)):
        digit = int(binary_string[i])
        power = 4 - i
        decimal += digit * (2 ** power)
    return decimal
def overlappingArea(l1, r1, l2, r2):
    x = 0
    y = 1
    ',' Length of intersecting part i.e
        start from max(l1[x], 12[x]) of
        x-coordinate and end at min(r1[x],
        r2[x]) x-coordinate by subtracting
        start from end we get required
        lengths ','
    x_dist = (min(r1[x], r2[x]) -
                max(l1[x], 12[x]))
    y_dist = (min(r1[y], r2[y]) -
                max(11[y], 12[y]))
```

```
areaI = 0
if x_dist > 0 and y_dist > 0 :
    areaI \(=\) x_dist * y_dist
```

return areaI
\#all environmental factors
Ew $=30-24$
$\mathrm{Ed}=30-1$
$\mathrm{Ef}=30-27$
Ec = 30-5

```
osc_area = 267 * 0.6 / 2.709
rf_area = 129 * 0.6 / 2.709
sa_area = 344 * 0.6 / 2.709
ac_area = 1 * 0.6 / 2.709
```

cro $=[[[4,12.5],[5,15]]$,
[[17.5, 8], [19, 10]],
[[7.5, 7], [11, 10.5]],
$[[4.5,7],[6,8.5]]$,
[[0, 3.5], [3.5, 10]],
[[14.5, 0], [19, 5]],
$[[5,0],[9,4]]]$
$\operatorname{dev}=[[[16,15],[17,16.5]]$,
[[0, 14], [0.5, 15]],
[[5.5, 13.5], [7,15]],
[[19, 7], [20, 11]],
[[3.5, 1.5], [5, 4]],
[[11.5, 0.5], [12.5, 2]]]
wet $=[[[8,12],[11.5,18.5]]$,
[[3.5, 4], [5, 6.5]]]
squareconstrains $=[[[0,15],[8,17.5]]$,
[[0, 17.5], [20, 1000]],
[[20, 0], [1000, 17.5]]]
def $\mathrm{F}\left(o s c _x, ~ r f _x, ~ s a _x, ~ a c _x, ~ o s c _y, ~ r f _y, ~ s a _y, ~ a c _y, ~ o s c _w i d t h, ~ r f _w i d t h, ~ s a _w i d t h, ~ a c _w i d t h\right): ~$
global osc_area, rf_area, sa_area, ac_area, dev, cro, wet, Ew, Ec, Ef, Ed
total = 0
if(osc_width == 0):
return 0
if (rf_width == 0):
return 0
if (sa_width == 0):
return 0
if (ac_width == 0):
return 0
osc_length = osc_area / osc_width
rf_length = rf_area / rf_width
sa_length = sa_area / sa_width
ac_length = ac_area / ac_width
if(osc_y <-8.5/6 * osc_x + 8.5):
return 0
if (rf_y <-8.5 / 6 * rf_x + 8.5):
return 0
if (ac_y <-8.5 / 6* ac_x + 8.5): return 0
if (sa_y < -8.5 / 6 * sa_x + 8.5): return 0
if (osc_y + osc_length > -7.5 / 4.5 * (osc_x + osc_width) + 44.33333): return 0
if (rf_y + rf_length > -7.5 / 4.5 * (rf_x + rf_width) + 44.33333): return 0
if (ac_y + ac_length > -7.5 / 4.5 * (ac_x + ac_width) + 44.33333): return 0
if (sa_y + sa_length > -7.5 / 4.5 * (sa_x + sa_width) + 44.33333): return 0
osc $=$ [[osc_x, osc_y], [osc_x + osc_width, osc_y + osc_length]]
$r f=\left[\left[r f _x, r f _y\right],\left[r f _x+r f _w i d t h, r f _y+r f _l e n g t h\right]\right]$
sa $=$ [[sa_x, sa_y], [sa_x + sa_width, sa_y + sa_length]]
ac $=$ [[ac_x, ac_y], [ac_x + ac_width, ac_y + ac_length]]
\#Outdoor Sport Complex
area = osc_area
\#developed
for i in range $(0,6)$:
total += Ed * overlappingArea(osc[0], osc[1], $\operatorname{dev}[i][\theta], \operatorname{dev}[i][1])$
area -= overlappingArea(osc[0], osc[1], $\operatorname{dev}[i][0], \operatorname{dev}[i][1])$
area -= overlappingArea(osc[0], osc[1], $\operatorname{dev}[i][0], \operatorname{dev}[i][1])$
\#Crop
for i in range (0,7):
total += Ed * overlappingArea(osc[0], osc[1], cro[i][0], cro[i][1])
area -= overlappingArea(osc[0], osc[1], cro[i][0], cro[i][1])
\#Wetland
for i in range (0,2):
total += Ed * overlappingArea(osc[0], osc[1], wet[i][0], wet[i][1])
area -= overlappingArea(osc[0], osc[1], wet[i][0], wet[i][1])
\#taking off the part that is not in the map
for j in range $(0,3)$:
if (overlappingArea(osc[0], osc[1], squareconstrains[j][0], squareconstrains[j][1]) > 0): return 0
total += area * Ef
\# Regenetive farm
area $=$ rf_area
\# developed
for i in range (0,6):
total += Ed * overlappingArea(rf[0], rf[1], dev[i][0], dev[i][1])
area -= overlappingArea(rf[0], rf[1], $\operatorname{dev}[i][0], \operatorname{dev}[i][1])$
\# Crop
for i in range (0, 7):
total += Ec * overlappingArea(rf[0], rf[1], cro[i][0], cro[i][1])
area -= overlappingArea(rf[0], rf[1], cro[i][0], cro[i][1])
\# Wetland
for i in range $(\theta, 2)$:
total += Ew * overlappingArea(rf[0], rf[1], wet[i][0], wet[i][1])
area -= overlappingArea(rf[0], rf[1], wet[i][0], wet[i][1])

```
# taking off the part that is not in the map
for j in range(0, 3):
    if (overlappingArea(rf[0], rf[1], squareconstrains[j][0], squareconstrains[j][1]) > 0):
        return 0
total += area * Ef
```

\#Solar array
area = sa_area
\# developed
for i in range (0, 6):
total += Ed * overlappingArea(sa[0], sa[1], dev[i][0], dev[i][1])
area -= overlappingArea(sa[0], sa[1], $\operatorname{dev}[i][0], \operatorname{dev}[i][1])$

\# Crop

for i in range $(0,7)$:
total += Ec * overlappingArea(sa[0], sa[1], cro[i][0], cro[i][1])
area -= overlappingArea(sa[0], sa[1], cro[i][0], cro[i][1])

\# Wetland

for i in range (0,2):
total += Ew * overlappingArea(sa[0], sa[1], wet[i][0], wet[i][1])
area -= overlappingArea(sa[0], sa[1], wet[i][0], wet[i][1])
\# taking off the part that is not in the map
for j in range $(0,3)$:
if (overlappingArea(sa[0], sa[1], squareconstrains[j][0], squareconstrains[j][1]) > 0): return 0
total += area * Ef
\# agriculture center
area = ac_area
\# developed
for i in range (0, 6):
total += Ed * overlappingArea(ac[0], ac[1], dev[i][0], dev[i][1])
area -= overlappingArea(ac[0], ac[1], $\operatorname{dev}[i][0], \operatorname{dev}[i][1])$
\# Crop
for i in range (0,7):
total += Ec * overlappingArea(ac[0], ac[1], cro[i][0], cro[i][1])
area $-=$ overlappingArea(ac[0], ac[1], cro[i][0], cro[i][1])
\# Wetland
for i in range (0,2):
total += Ew * overlappingArea(ac[0], ac[1], wet[i][0], wet[i][1])
area -= overlappingArea(ac[0], ac[1], wet[i][0], wet[i][1])
\# taking off the part that is not in the map
for j in range (0,3):
if (overlappingArea(ac[0], ac[1], squareconstrains[j][0], squareconstrains[j][1]) > 0): return 0
total += area * Ef
\#check if 4 rectangles touch each other
if(overlappingArea(ac[0], ac[1], sa[0], sa[1]) > 0):
return 0
if (overlappingArea(osc[0], osc[1], sa[0], sa[1]) > 0):
return 0
if (overlappingArea(rf[0], rf[1], sa[0], sa[1]) > 0):
return 0
if (overlappingArea(rf[0], $r f[1]$, ac[0$], \operatorname{ac}[1]$) >0): return 0
if (overlappingArea $(r f[\theta], \operatorname{rf}[1], \operatorname{osc}[0], \operatorname{osc}[1])>0):$ return 0
if (overlappingArea(osc[0], osc[1], ac[0], ac[1]) > 0): return 0
return total
\# find non-zero fitness for selection
def get_fitness(pred): return pred
\# convert binary DNA to decimal and normalize it to a range(0, 5)
def translateDNA(pop):
newpop = []
for i in range(0, POP_SIZE):
newpop.append([])
for i in range(0, POP_SIZE):
for j in range(0, DNA_SIZE//3, 5):
$\operatorname{string}=\operatorname{str}(\operatorname{pop}[i][j])+\operatorname{str}(\operatorname{pop}[i][j+1])+\operatorname{str}(\operatorname{pop}[i][j+2])+\operatorname{str}(\operatorname{pop}[i][j+3])+$ $\operatorname{str}(p o p[i][j+4])$
newpop[i].append(binary_to_decimal(string) / float(2**5-1) * x_bound[1])
for j in range(DNA_SIZE//3, DNA_SIZE//3 * 2, 5):
$\operatorname{string}=\operatorname{str}(\operatorname{pop}[i][j])+\operatorname{str}(\operatorname{pop}[i][j+1])+\operatorname{str}(p o p[i][j+2])+\operatorname{str}(\operatorname{pop}[i][j+3])+$ $\operatorname{str}(p o p[i][j+4])$
newpop[i].append(binary_to_decimal(string) / float(2**5-1) * y_bound[1])
for j in range(DNA_SIZE//3 * 2, DNA_SIZE, 5):
string $=\operatorname{str}(\operatorname{pop}[i][j])+\operatorname{str}(p o p[i][j+1])+\operatorname{str}(p o p[i][j+2])+\operatorname{str}(p o p[i][j+3])+$ str (pop[i][j+4])
newpop[i].append(binary_to_decimal(string) / float(2**5-1) * length_bound[1])
return newpop
def select(pop, fitness): \# nature selection wrt pop's fitness
if(fitness.sum() == 0):
pop $=$ np.random.randint (2, size=(POP_SIZE, DNA_SIZE))
return pop
else:
$i d x=n p . r a n d o m$. choice(np.arange(POP_SIZE), size=POP_SIZE, replace=True, p=fitness/(fitness.sum()))
return pop[idx]
def crossover (parent, pop): \# mating process (genes crossover)
if np.random.rand() < CROSS_RATE:
$i_{-}=$np.random.randint(Q, POP_SIZE, size=1) \# select another individual
from pop
cross_points = np.random.randint(0, 2, size=DNA_SIZE).astype(bool) \# choose crossover points parent[cross_points] = pop[i_, cross_points] \# mating and produce one child
return parent
def mutate(child):
for point in range(DNA_SIZE):
if np.random.rand() < MUTATION_RATE:
child[point] $=1$ if child[point] $==0$ else 0
return child

```
pop = np.random.randint(2, size=(POP_SIZE, DNA_SIZE)) # initialize the pop DNA
new_row = np.array([1,0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,
    0, 0, 0, 1, 0, 1,1, 1, 1, 0, 1,1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0,0, 0, 0, 0,
    0, 1])
pop[0] = new_row
a = []
b = []
for _ in range(N_GENERATIONS):
    a.append(_)
    print("This is generation ->", _)
    F_values = []
    list2 = translateDNA(pop)
    for i in range(0, POP_SIZE):
        list1 = list2[i]
        F_values.append(F(list1[0], list1[1], list1[2], list1[3],
            list1[4], list1[5], list1[6], list1[7],
            list1[8], list1[9], list1[10], list1[11])) # compute function value by extracting
                    DNA
    F_values = np.asarray(F_values)
    print(F_values, "F_values")
    fitness = get_fitness(F_values)
    b.append(max(fitness))
    print(max(fitness))
    print("Most fitted DNA: ", pop[np.argmax(fitness), :])
    pop = select(pop, fitness)
    pop_copy = pop.copy()
    for parent in pop:
        child = crossover(parent, pop_copy)
        child = mutate(child)
        parent[:] = child # parent is replaced by its child
```

plt.scatter(a, b)
plt.show()

Appendix D Genetic Algorithm DNA Graph Code

 1010111000100011 "
import turtle
import random
\# setting up of all the turtles, game chart and screen
screen = turtle.Screen()
screenW $=1280$
screenH $=720$
pen = turtle.Turtle()
osc_area $=267$ * $0.6 / 2.709$
rf_area $=129$ * 0.6 / 2.709

```
sa_area = 344 * 0.6 / 2.709
ac_area = 1 * 0.6 / 2.709
```

```
DNA_SIZE = 5 * 3 * 4 # DNA length
POP_SIZE = 400 # population size
CROSS_RATE = 0.8 # mating probability (DNA crossover)
MUTATION_RATE = 0.003 # mutation probability
N_GENERATIONS = 1000
length_bound = [1, 20] # x upper and lower bounds
x_bound = [0, 20]
y_bound = [0, 17.5]
```

area $=$ [osc_area, rf_area, sa_area, ac_area]
def drawrec (11, l2, r1, r2):
pen.penup()
pen.goto(l1, 12)
pen.pendown()
pen.goto(l1, r2)
pen.goto(r1, r2)
pen.goto(r1, 12)
pen.goto(11, 12)
newstring = ""
for x in $\operatorname{range}(0,119,2)$:
newstring += string[x]
def binary_to_decimal(binary_string):
decimal $=0$
for i in range(len(binary_string)):
digit $=$ int(binary_string[i])
power = 4 - i
decimal += digit * (2 ** power)
return decimal
def translateDNA(given):
newpop = [[],[],[],[]]
for j in range(0, DNA_SIZE//3, 5):
string $=\operatorname{str}($ given[j]) $+\operatorname{str}($ given $[j+1])+\operatorname{str}($ given $[j+2])+\operatorname{str}($ given[j+3]) +
str(given[j+4])
newpop[(j) // 5].append(binary_to_decimal(string) / float(2**5-1) * x_bound[1])
for j in range(DNA_SIZE//3, DNA_SIZE//3 * 2, 5):
string $=\operatorname{str}($ given $[j])+\operatorname{str}($ given $[j+1])+\operatorname{str}($ given $[j+2])+\operatorname{str}($ given $[j+3])+$
str(given[j+4])
newpop[(j-20) // 5].append(binary_to_decimal(string) / float(2**5-1) * y_bound[1])
for j in range(DNA_SIZE//3 * 2, DNA_SIZE, 5):
string $=\operatorname{str}($ given $[j])+\operatorname{str}($ given $[j+1])+\operatorname{str}($ given $[j+2])+\operatorname{str}($ given $[j+3])+$
str(given[j+4])
newpop[(j-40) // 5].append(binary_to_decimal(string) / float(2**5-1) * length_bound[1])
return newpop
array = translateDNA(newstring)
print (array)
x $=10$
pen.goto (6 * $x, 0)$
pen.goto(0, 8 * x)
pen.goto(0,15 * x)
pen.goto (8 * $\mathrm{x}, 15$ * x)
pen.goto (8 * $x, 17.5$ * x)
pen.goto (15.5 * x, $17.5 * x$)

```
pen.goto(20 * x, 11 * x)
pen.goto(20 * x, 0 * x)
pen.goto(6 * x, 0)
y = x
for x in range(0, 4):
    drawrec(y * array[x][0], y * array[x][1], y *(array[x][0] + array[x][2]), y*(array[x][1] +
        area[x] / array[x][2]))
turtle.done()
```


Appendix E Linear Programming Code

```
% Create optimization variables
b = optimvar("b",1,8,"LowerBound",0);
% Set initial starting point for the solver
initialPoint.b = zeros(size(b));
% Create problem
problem = optimproblem("ObjectiveSense","Maximize");
% Define problem objective
problem.Objective = 0.05 * (-4.86) * (200 * b (1) +50*b(2)
    -25*b(3)+500*b(4)-20*b(5)-3330*b(6)-2*b(7)-2030*b(8)) + 0.95* 2 * (13557.69* b(1)
    +382.43*b(2) + 161.35* b(3)+ 509.26*b(4) + 287.37*b(5)+
    21070.95*b(6)+3999.91*b(7)+193.58*b(8));
% Define problem constraints
problem.Constraints.constraint1 = sum(b) <= 741;
problem.Constraints.constraint2 = 3*b(1) +4*b(2) +8*b(3)+9*b(4)+9*b(5)+3*b(6)+6*b(7)+7*b(8) >=
        3000;
problem.Constraints.constraint3 = 10*b(1) +9*b(2) +b(3)+2*b(4)+2*b(5)+b(6)+9*b(7)+2*b(8) >=
        2000;
problem.Constraints.constraint4 = 9.5*b(1) +b(2) +7.5*b(3)+8.5*b(4)+8.5*b(5)+2.5 *
        b(6)+9*b(7)+7.5*b(8) >= 4500;
problem.Constraints.constraint5 = 9.5* b(1) +8*b(2) +b(3)+b(4)+1.5*b(5)+b(6)+7*b(7)+b(8) >=
        1500;
% Display problem information
show(problem);
% Solve problem
[solution,objectiveValue,reasonSolverStopped] = solve(problem,initialPoint);
% Display results
solution
reasonSolverStopped
objectiveValue
% Remove Variable
clearvars b initialPoint reasonSolverStopped objectiveValue
```


Appendix F TOPSIS Code

```
#include<iostream>
#include<cmath>
using namespace std;
int main(){
        double pr;
        double eco;
        double array1[8];
        double bd, wd;
        double array[8][8] = {
        {123,0,0,128,0,487,3,0},
        {0,0,0,0,0,510,147,84},
        {0,0,0,0,54,536,151,0},
        {0,0,0,0,2,511,147,81},
        {0,0,0,0,0,510,147,84}
        };
    for(int i = 0; i < 5;i ++){
        pr = 13557.69 * array[i][0] + 382.43 * array[i][1] + 161.35 * array[i][2]
            + 509.26 * array[i][3] + 287.37 * array[i][4] + 21070.95 * array[i][5]
            + 3999.91 * array[i][6] + 193.58 * array[i][7];
        eco = 200 * array[i][0] + 50 * array[i][1] - 25 * array[i][2]
            + 500* array[i][3] - 20 * array[i][4] - 3330 * array[i][5] - 2 * array[i][6]
            - 2030 * array[i][7];
            cout<<pr<<endl<<eco<<endl;
            bd = sqrt(pow(2 * (12006000 - pr),2) + pow(4.86 * (-1869100 - pr),2));
            wd = sqrt(pow(2 * (118250 - pr),2) + pow(4.86 * (351000 - pr),2));
            array1[i] = wd/(bd + wd);
    }
    for (int i = 0 ; i < 5; i ++){
            cout<<array1[i]<<endl;
    }
    return 0;
}
```

