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Summary

Land planning is crucial to ensure that urban development occurs with consideration to the eco-
nomic, social, and environmental interests of a community. To adhere to optimal land planning, many
conflicting factors must often be considered. In this paper, our team makes a quantitative decision
metric that can analyze these factors and determine the “best” choice from a given set of development
options, as well as the allocation of those choices.

First, linear programming is used to determine two “best” development options: one that maxi-
mizes both economic and social factors, and one that minimizes negative environmental factors while
maximizing social. The maxima and minima from linear programming are then applied to the Tech-
nique for Order of Preference by Similarity to Ideal Solution to obtain a third real-world “overall
best” option that balances economic and environmental factors with a desired weighting. Genetic
algorithm is then used to determine the optimal positioning of the three established “bests” via an
analysis of opportunity costs based off of an environmental degradation penalty index. Finally, the
Cobb-Douglas Function is used to conduct a short- and long-term analysis of each result’s profit by
solving differential equations with regard to inflation.

This model is then applied to the parcel of land in Victory, NY, using data obtained from research.
The ideal option and positioning is found to be 267 acres of sports complex in the northern half of the
land, 129 acres of regenerative farm directly west of the sports complex, 344 acres of solar array in the
southernmost region of the land, and 1 acre of agritourist centre on the eastern side of the land.

Conducting a sensitivity analysis on our model reveals that the linear programming results are most
affected by the area and societal benefit restrictions, but that the TOPSIS results remain relatively stable
regardless of the changing of parameters.

Our model is then adjusted to account for Micron Technology, Inc. building a fabrication facility
nearby. As this facility brings more jobs and thus more people, the profit of facilities that involve
tourism will increase. However, due to pollution caused by the facility, nature-based facilities will
suffer detriments. With these adjustments, the model is re-run, and the results are compared to the
previous results. In this scenario, there would be a greater area of the solar array and agritourist
centre, a smaller sports complex, no regenerative farm, and 128 acres of ranch.

Finally, the generalizability of our model is discussed by first discussing its application in Shenzhen,
China, and then widening the scope to any location in any country. We conclude that our model will
provide the most implementable results in rural environments due to its quantitative nature that cannot
consider complicated urban planning laws, but that the model can be applied to nearly any scenario as
long as data is provided.

Keywords: Linear Programming, TOPSIS, Genetic Algorithm, Cobb-Douglas Function, Differential
Equation
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1 Introduction
To build, or not to build: that is the question that plagues land planners and decision makers day and

night (and tomorrow, and tomorrow, and tomorrow). Regional planning is an extremely important aspect of
land planning, and its importance has only increased in recent years as urban sprawl continues to grow [3].
On top of this, growing awareness over issues like climate change has caused land planners to become more
mindful of how they design their plans, as well as what they should take into account during the design
process. With this in mind, community leaders and business planners have consulted us to help decide the
“best” use of a 3km2 (741.316 acres) parcel of land 50 km away from Syracuse.

In this paper, we begin by creating a model to determine the “best” development option. Research is
conducted to determine economic, environmental, and social criteria/sub-criteria with influence on devel-
opment options. These variables are then applied in linear programming, TOPSIS, and genetic algorithm
to create the base model. Next, by doing further research and collecting data, the model is applied to the
parcel of land in New York. Sensitivity analysis is also conducted on the model to test the adaptability and
reliability of its result.

We then explain how our model will be affected by the Micron Tech., Inc. fabrication facility being built
not too far from the parcel of land. A new set of calculations are also performed for this scenario. Finally,
the generalizability of our model is evaluated by discussing how it would perform in both an environment
familiar to our team (Shenzhen, China) and in other international contexts.

Figure 1 Flow Chart of Process

2 Preliminary Assumptions and Definitions

2.1 Variable Definitions
Table 1 Variable Definitions

Notations Descriptions Notations Descriptions

P Annual profit Oi Facility i’s employment index

Ai Attraction index of facility i E Annual carbon emission

Ri Facility i’s recreational index Si Facility i’s societal service index

αpr
i Annual profit of facility i xA

i Area of facility i

ϵcei Annual carbon emission of facility i xb Highest annual profit possible

yb Least annual carbon emission possible h Developers’ desired weighting

Asi Facility s’s area in land type i F Fixed cost

n Number of Facilities Aj Area of facilities in land type j
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2.2 Assumptions
Assumption 1: The “best” development option can be determined via purely quantitative means. This

assumption is the basis of our model and also greatly simplifies it. Additionally, there are already many
diverse quantitative measures available to employ in modelling, so limiting the factors used to quantitative
ones will still provide a comprehensive result.

Assumption 2: All global, local, and environmental developments in the near and far future will not
suddenly change and will remain relatively predictable. This includes extreme weather phenomena, sud-
den tragedies, and unforeseen economic and political changes. The nature of these things makes them
unpredictable and rare, and therefore difficult - and arguably unnecessary due to their rarity - to model.

Assumption 3: The available budget for initial development is 50 million USD. Looking at land in and
around Syracuse, even if we take the lower averages, this plot of land should cost far more than 50 million
USD. Additionally, many of these development options require lots of money to build. Since these options
have been considered by the decision-makers, it is reasonable to assume that we have at least 50 million USD
to put towards developing this plot of land.

Assumption 4: The developments to be done on this land have been given the green light by the
appropriate party (i.e. local or state government, permit association, etc.). Nearly all of the possible devel-
opment options require some sort of building permit, development permit, or a similar green light. Thus,
for the sake of being able to consider all of these options in our model, we assume that all possibilities have
already received the necessary permits.

Assumption 5: The placement of land types is visually distinguishable and is as indicated in the pro-
vided satellite map. For the sake of simplicity and straightforwardness, we assume that the land types
correspond with the visual cues in the satellite map; i.e., flat-looking yellow-green is cropland, an uneven
patch of green is forest, etc.

Assumption 6: The best use of a cross-country skiing trail during the rest of the year is as a hiking trail.
Cross-country skiing being only available for 3 months of the year gives this option a huge disadvantage,
causing it to be automatically neglected by nearly any quantitative model. Thus, to level the playing field,
we assume that the trail is open during the non-winter months as a hiking trail.

3 Task 1: Creating the Model
This task requires us to create a quantitative decision metric that can define the “best” use of the land. [6]

To do this, we use a combination of linear programming, TOPSIS, and genetic algorithm:

• Linear Programming - Used to obtain the maxima and minima of criteria [13]. We first use research
to identify the most important criteria (in other words, the criteria that affect the development op-
tions the most). Then, formulae and restrictions are created to model these criteria in a standardized,
quantitative way.

• TOPSIS - We apply the maximum and minimum from linear programming to deduce the best overall
alternative in TOPSIS [11]. By plotting each development option into the model and measuring dis-
tances between each option and the best/worst case, a “best” option (the option that is closest to the
best case) is revealed.

• Genetic Algorithm - Used to determine the distribution and location of facilities determined in TOP-
SIS [9]. We invite the three “best” options (highest performing overall and by environmental and
economic criteria) to participate in genetic modelling. Thus, the most ideal distribution for the land is
finalized, and the “best” plan for the land is also finalized.

3.1 Initial Research

To conduct research, the sources consulted are largely government or official sources when possible (either
Syracuse, New York State, or US National). If this is not possible, we look for data from relevant sources,
such as solar panel companies for solar array information. Our data sources are listed in Table 2.
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Table 2 Data Sources and Uses

Information Source Site

Agricultural data: income, income:land trend US Department of Agriculture https://www.usda.gov
Geographical and Environmental data City of Syracuse https://www.syr.gov/Home
Economic information Observatory of Economic Complexity (OEC) https://oec.world
Solar Array information LG Corporation https://www.lg.com/global
income statistics Forbes Finance Council https://www.forbes.com
Agriculture finance information Office of the New York State Comptroller https://www.osc.state.ny.us
Carbon Emissions data New York Academy of Sciences https://nyaspubs.onlinelibrary.wiley.com
Agritrst, cross-country ski and crop info Ontario Ministry (OMAFRA) http://omafra.gov.on.ca

From this research, seven factors stand out as criteria that would affect the determination of the “best”
development option: profit, employment opportunities, attraction of tourism, carbon emissions, environ-
mental degradation, recreational offers, and societal benefits.

3.2 Criteria Identification

The final determined criteria can largely fit into three main categories: economic, environmental, and
social, as is shown in Figure 2.

Figure 2 Quantitative Criteria

• Economic Factors:
– Profit: Referenced by P . This includes the profit generated by all facilities while extracting the

cost required to produce goods or services with respect to time and area coverage.

– Employment Opportunities: Referenced by Oi. This is an evaluative index on the employment
opportunities provided by land development i.

– Attraction of Tourism: Referenced by Ai. This is an evaluative index on the tourist and resident
attraction value of development i. An increase in the attraction will certainly be a booster to the
local and possibly even the state economy.

• Enviromental Factors:
– Carbon Emissions: Referenced by E. It is essential to minimize carbon emissions because they

contribute to climate change that poses a significant threat to the environment, economy, and
human societies worldwide.

– Environmental Degradation: Referenced by EW , EF , ED, and EC . This is a penalty-based index
utilized in the genetic algorithm. It considers the effect of biodiversity reduction, soil erosion, and
all forms of pollution on each land type.

• Social Factors:
– Recreation: Referenced by Ri. Citizens’ enjoyment will also matter in this deciding factor. Some

facilities offer recreational activities, while others do not. That will affect the locals’ acceptance of
the facilities and thus affect aspects such as attraction of tourism and employment opportunities.
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– Societal Benefits: Referenced by Si. Other than recreation, there are also other facilities that a
society yearns, might that be education, clean water, nutritious crops, or other similar aspects.

3.3 Linear Programming for Preliminary Planning

In the first step of this model, linear programming is used to incorporate criteria that can be modelled
linearly. These criteria can be either objective functions to be maximized or minimized, or restrictions on
those functions. The variables involved are assumed to be continuous. The resulting solution is definitive
and represents the best possible solution, given the available resources and restrictions imposed.

To facilitate the chosen criteria in linear programming, social factors are incorporated into restrictions on
economic and environmental. In other words, they are not independent objective functions that need to be
optimized.

3.3.1 Economic

In modelling the aforementioned economic criteria in linear programming, the profit should be maxi-
mized. The development option that yields the highest economic results should be the “best” in that aspect,
as it would have the highest profit, provide the most employment opportunities, and attract the most tourists
and residents.

maxP =
n∑

i=1

(
αpr
i × xA

i

)
(1)

s.t.



∑n
i=1 x

A
i ≤ 741.316∑n

i=1 Si × xA
i ≥ 3000∑n

i=1Ri × xA
i ≥ 2000∑n

i=1Oi × xA
i ≥ 4500∑n

i=1Ai × xA
i ≥ 1500

(2)

where P is the profit; αpr
i is the annual profit of facility i; xA

i is the area of facility i in acres; Si is the societal
index of facility i; Ri is the recreational index of facility i; Oi is the employment opportunity index of facility
i; and Ai is the tourism and residence attraction index of facility i.

Restriction Explanation

•
∑n

i=1 x
A
i ≤ 741.316: As a basic measure, the first restriction placed on this confirms that the facility does

not exceed the available area of land.

•
∑n

i=1Oi×xA
i ≥ 4500 and

∑n
i=1Ai×xA

i ≥ 1500: Restrictions are also written to ensure that employment
opportunities (Oi) and attraction of tourism (Ai) are sufficient enough to provide tangible economic
benefits.

•
∑n

i=1 Si × xA
i ≥ 3000 and

∑n
i=1Ri × xA

i ≥ 2000: Finally, the societal factors are incorporated into
the restrictions.

∑n
i=1 Si × xA

i ≥ 3000 sets the bar for societal benefits to the local community, and∑n
i=1Ri × xA

i ≥ 2000 for recreational opportunities.

3.3.2 Environmental

The environmental criteria - only carbon emissions in this case - should be as low as possible (i.e. mini-
mized) to deduce the “best” option under this criteria.

minE =
n∑

i=1

(
ϵcei × xA

i

)
(3)
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s.t.


∑n

i=1 x
A
i ≤ 741.316∑n

i=1 Si × xA
i ≥ 3000∑n

i=1Ri × xA
i ≥ 2000

(4)

where E is the annual carbon emission of the land model in kg; and ϵcei is the annual carbon emission of
facility i in kg · acres−1.

Restriction Explanation
Because there is only one environmental factor being modelled with linear programming, the restrictions
are comprised of only

•
∑n

i=1 x
A
i ≤ 741.316 the basic area restriction, and

•
∑n

i=1 Si × xA
i ≥ 3000 and

∑n
i=1Ri × xA

i ≥ 2000, the societal restrictions, as described previously.

3.4 TOPSIS for Working Model
With a finished linear programming model, we can begin to use TOPSIS to create a working model that

can define the one “best” alternative.

3.4.1 Introduction to TOPSIS

TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) [2] is a multi-criteria decision-
making method used to evaluate the best alternative from a set of available options. It is based on the
assumption that the best alternative is the one that has the shortest distance from the positive ideal solution
(i.e. the best alternative that maximizes the criteria) and the longest distance from the negative least ideal
solution (i.e. the worst alternative that minimizes the criteria).

To apply the method, a set of criteria is first defined. Weights are then assigned to each criterion based
on the criterion’s relative importance. Then, a matrix including each alternative and criterion is constructed.
The matrix is also normalized to account for differences in the scale of the criteria. Finally, the distance
between each alternative and the best and worst solutions is measured, and the alternatives are ranked
based on their closeness to the positive ideal solution.

3.4.2 TOPSIS in Our Model

The TOPSIS model in this report will be done on a 2D coordinate plane, with the x-axis measuring annual
economic profit and the y-axis measuring annual carbon emissions, as calculated in the linear programming
section.

1. Normalization: The x value xb represents the highest annual , and the y value yb represents the least an-
nual carbon emission. It must also be considered that the range of profits could be drastically different
from the range of carbon emissions. To standardize the relationship between the two, the environmen-
tal value will be modified (multiplied by r) to emulate the former.

|xb|
|yb|

= r (5)

2. Weighting: To weigh the economic and environmental factors according to their influence, the eco-
nomic aspect will also be adjusted to be h times that of the environmental, if the decision maker so
wishes (if not, then h = 1). This is proposed to account for the fact that each stakeholder will have
different beliefs as to which factors are more important in determining the “best” development option.

3. Best and Worst: Taking into account these preliminary factors, a formula is created to determine the
best (positive ideal) and worst (negative least ideal) possibilities Ib and Iw, respectively:

Ib = (xb|h×max(P ), yb|r ×min(E)) , Iw = (xw|h×min(P ), yw|r ×max(E)) (6)
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4. Candidates Selection: To reduce the time complexity of the model, 19 points are then manually deter-
mined, of which we believe at least one must be the best option. These points are set on a spectrum,
ranging from heavily considering environmental factors (5:95%) to heavily considering economic fac-
tors (95:5%). The 19 points (xω, yω) are each determined using another linear programming system that
combines economics and environment considerations.

max
n∑

i=1

xA
i (h× ω × αpr

i − r × (1− ω)× ϵcei ) (7)

s.t.



∑n
i=1 x

A
i ≤ 741.316∑n

i=1 Si × xA
i ≥ 3000∑n

i=1 Ri × xA
i ≥ 2000∑n

i=1 Oi × xA
i ≥ 4500∑n

i=1 Ai × xA
i ≥ 1500

(8)

where ω ∈ {0.05, 0.1, 0.15, . . . , 0.95}. From the aforewritten formulae, the calculation for xω and yω can
be formed:

xω = h×
n∑

i=1

xA
i α

pr
i , yω = r ×

n∑
i=1

xA
i ϵ

ce
i (9)

5. Distance Calculation: Finally, with xω and yω, distance calculations - the defining aspect of TOPSIS -
begin. Using the distance formula, the distance between development option ω at (xω, yω) and the ideal
and least ideal possibilities are calculated as

dωw =

√
(xω − xb)

2 + (yω − yb)
2, dωb =

√
(xω − xw)

2 + (yω − yw)
2. (10)

6. Judging Index Calculation: Both distance calculations are repeated for all 19 manually-determined
points established above. After the process is finished and results are recorded, a judging index sω is
created based on the distance of point each point (xω, yω) from the ideal and least ideal possibilities:

sω =
dωw

dωw + dωb
, 0 ≤ sω ≤ 1. (11)

Note that sω = 1 if and only if the option is exactly the ideal alternative, and sω = 0 if and only if the
option is exactly the least ideal alternative.

7. Ranking: All results are taken and ranked according to sω, and the highest ranking overall option is
chosen along with the highest-performing economic and environmental options from linear program-
ming to participate in the next step, genetic algorithm (GA).

3.5 Genetic Algorithm (GA) for Application

Next, the positioning of each facility must be calculated. This is because, although the maximum profit
of different facilities have now been shown, it is still necessary to evaluate their placement for minimum
environmental damage according to the environmental degradation criteria determined in Section 3.2.

3.5.1 Process of Genetic Algorithm

GA is a type of optimization algorithm that uses a heuristic search technique, finding the optimal solution
to a given problem by mimicking the process of natural selection and evolution. Genetic algorithm goes
through the following steps to achieve this:
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• Initialization: First, a possible solution (the initial instance) is found and fed to the program in the
form of “DNA”, a binary sequence indicating all the required input, just like all the other generations.
The DNA data is a string that constrains all variable subject to change,

• Conversion: The binary sequence in the DNA is converted to decimal variables, and fitted across the
range of all possible data.

• Selection: The “fitness” of the DNA is evaluated based on how successful it is in solving the objective
function. If the DNA sequence has a high fitness value, it gets a higher chance to survive and reproduce
the next generation of offspring.

• Reproduction: This is done through crossover, where one parent selected according to fitness has its
DNA replaced at random points by another randomly selected parent.

• Mutation: During this process, mutations may occur by arbitrarily choosing a DNA bit from a child
and reverting it.

• Repetition until convergence: The steps described above are repeated for a fixed number of genera-
tions (at which point the final-generation child with the highest fitness is selected), or indefinitely until
the satisfactory solution is found.

GA is particularly suitable for problems that involve non-linear objective functions and large solution
spaces, and the detail of GA is shown in Algorithm 1.

Algorithm 1: Genetic Algorithm for Finding Best Solution
Input: An instance δ, DNA length β, reproduction rate α, mutation rate γ, population size

σ, generation number ω
Output: Fittest DNA string found Pbest

// Initialize

1 Objective function OF(x), Current Population P , Current Fitness F ;
2 Generate σ DNA genes, each being 60 bytes long, and save them to P ;
3 for i← 0 to ω do

// Calculate Fitness

4 for j ← 0 to σ do
5 F [j]← OF (P [j]);

// Selection according to Fitness

6 for j ← 0 to σ do
7 Choose DNA P [θ] with replacement RwithprobabilityF [θ]/

σ−1∑
k=0

F [k];

8 Randomly choose DNA P [κ] with replacement;
// Reproduction

9 if randint ∈ [0, 1] ≤ α then
10 Randomly choose k;
11 set P [θ][k]← P [κ][k];

// Mutation

12 for j ← 0 to σ do
13 for k ← 0 to 60 do
14 if randint ∈ [0, 1] ≤ γ then
15 Revert P [j][k] from 0 to 1 or from 1 to 0;

// Return

16 return Pbest ← maxFi;
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3.5.2 Application of Genetic Algorithm

To simplify the model, we put the map into a flat Cartesian coordinate system. Assume that the point at
the bottom left corner of the map is the origin point (0,0), and the top right corner will be (20, 17.5). Hence,
each unit of land is calculated to be equal to Arealand

Areaplane
= 2.709 acres of land.

Since the profit of the facilities is constant with the calculated area of TOPSIS, the genetic algorithm will
focus on an aspect called opportunity cost. Opportunity cost is defined as the loss of potential gain from
other alternatives when one is chosen. In our model, this cost is a number between 0 to 30, with a lower
number indicating a more precious environment.

The opportunity cost [10] of each land type is formed by 3 different aspects - Pollution, Soil Erosion, and
Biodiversity. Each has their specific environment cost (except shrubs, which will not be considered due its
mere one percent coverage). EW represents the environmental cost of wetland; EF of forest; ED of developed
land; and EC of crop land.

The objective function - the fitness evaluator - is as follows:

max
∑
m∈S

AmEm (12)

s.t.


|xsi − xsj| ≥ ∆xsi+∆xsj

2

|ysi − ysj| ≥ ∆ysi+∆ysj
2

(xsi ±∆xsi, ysi ±∆ysi) ∈M

(xsi ±∆xsi, ysi ∓∆ysi) ∈M

(13)

where m is the land type; s is the type of facility; ks is the number of facility s; Asi refers to the area of facility
s in land type i; S is the set of {Wetland, Forest,Developed, Crop}; and (xsi, ysi), (xsj, ysj) is the center of the
facilities (assuming all facilities are rectangular with sides parallel to either the x-axis or y-axis). Note that in
programming, the input is taken in the bottom left corner, and the center is then calculated by adding half
of the height and width. ∆xsi is the width of the rectangle and ∆ysi is the length; and AW , AF , AD, AC refers
to the area of facilities in wetland, forest, developed area, and cropland, respectively.

Restrictions Explanations

• |xsi−xsj| ≥ ∆xsi+∆xsj

2
and |ysi−ysj| ≥ ∆ysi+∆ysj

2
ensure that the facilities do not overlap with each other,

and

• (xsi ±∆xsi, ysi ±∆ysi)
⋃

(xsi ±∆xsi, ysi ∓∆ysi) ∈M ensures that the facilities lie inside the map.

The detail of the results is further explained in Section 4.2.3, and the complete code for GA is demonstrated
in Appendix C.

3.6 Short- and Long-term Considerations

To incorporate the short-term and long-term into consideration, we focus on total profit, which is equal
to the total production value minus the total cost. In other words, the total profit of a certain distribution of
facilities will be equal to the total cost of maintenance subtracted from the value of all goods produced in a
year. Thus, to find total profit, the equation

Tp(t) = P (t)− C(t) (14)

is used, where Tp(t) is the total profit; P (t) is total production value accumulated through t years; and C(t)
is total cost accumulated through t years.
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• Total Production: The total production value can be measured by the convolution of the Cobb-Douglas
production function [8] and an exponential function:

P (t) = Y (t) ∗ (1 + α)t =

∫ t

0

Y (u)(1 + α)t−udu (15)

where α is the rate of inflation. Y (t) is the Cobb-Douglas production function

Y (t) = A× L(t)g ×K(t)j (16)

where A is the efficiency constant; g and j are economic constants. The efficiency constant is a measure
of total factor productivity. The economic constant measures the output elasticity (percentage change
of output) of capital and labour.

Additionally, L(t) is the total labour with respect to time, where labour is the working time. L(t) can
be expressed as

L(t) = −a(Li − L0)

t+ a
+ Li (17)

where a is the labour constant; L0 is the total hours of labour at t = 0; Li is the total hours of labour at
t =∞.

K(t) is the total capital with respect to time, which can be expressed as{
dK
dt

= r(1− K
Ki
)K

K(0) = K0

(18)

where r is the growth constant; K0 is the total hours of labour at t = 0; and Ki is the total hours
of labour at t = ∞. The growth constant is a measure of the speed at which facility construction is
completed.

From this, the solution to the function is concluded to be:

K(t) =
Ki

1 + (Ki

K0
− 1)e−rt

(19)

• Total Cost: The total cost consists of the fixed cost (cost to build) and the accumulated operating cost
(cost of maintenance and operations). The operating cost can be measured by the convolution of a
logarithmic function and an exponent function. The total cost function C(t) is:

C(t) = F + log(bt+ 1) ∗ (1 + α)t = F +

∫ t

0

log (bu+ 1) (1 + α)t−udu (20)

where F is the fixed cost; and b is a constant.

• Total Profit: Plug all functions K(t) and C(t) into the main function, and the result will be:

Tp(t) = A

∫ t

0

(
−a(Li − L0)

t+ a
+ Li

)g
(

Ki

1 + (Ki

K0
− 1)e−rt

)j

(1+α)t−udu−F −
∫ t

0

log (bu+ 1) (1+α)t−udu

(21)

From this, the function can be graphed and visualizations can be made for the short-term and long-term
profit fluctuation based on labour input, capital input, inflation rate, and fixed cost. The numerical solution
and the detail of results are further explained in section 4.2.4.

4 Task 2: Application and Sensitivity Analysis
We first revisit the sources listed under Section 3.1 and gather concrete data to incorporate into the finished

model. From this, the “best” options out of those listed by the decision-makers are determined using linear
programming and TOPSIS. Their positioning is also calculated using genetic algorithm. The short- and
long-term profit analysis is then applied on the genetic algorithm results. Finally, a sensitivity analysis is
conducted on our model to evaluate its reliability and the sensitivity of the results.
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4.1 Data Collection

Using the sources listed in Table 2, we determined concrete numbers for each variable and each develop-
ment option. Our final master data table with all of these values can be seen in Table 3.

Table 3 Data of Different Facilities

Measurement Sports Comp. Ski/Trail Crop F. Ranch Regen. F. Sol. Arr. Agritrst Cn. Agrvltc F.
Pj ($ · acre−1) 9038.46 254.95 179.28 562.51 319.30 19155.41 3999.91 215.09
Ej (kg · acre−1) 200 50 -25 500 -20 -3330 -2 -2030

Oi 9.5 1.0 7.5 8.5 8.5 2.5 9.0 7.5
Ai 9.5 8.0 1.0 1.0 1.5 1.0 7.0 1.0
Si 3.0 4.0 8.0 9.0 9.0 3.0 6.0 7.0
Ri 10.0 9.0 1.0 2.0 2.0 1.0 9.0 2.0

The Employment Opportunity Index Oi, Tourism Attraction Index Ai, Societal Benefit Index Si, and Recre-
ational Index Ri are all determined manually as a number from 1.0 to 10.0 via a thorough analysis of all
available sources on each respective topic. The environmental degradation penalties EW , ED, EF , and EC

are also determined using this method. The exact values can be seen in Table 14. Additionally, the carbon
emission data Ej are all rounded to the nearest integer.

4.2 The “Best” Option

The data described above are applied to the linear programming systems defined in Section 3.3, the TOP-
SIS process in Section 3.4, and the genetic algorithm introduced in Section 3.5. In this way, the “best” land
development options and their distribution and positioning are determined.

4.2.1 Linear Programming Results

Using the linear programming systems defined in Section 3.3 and the data described in Section 4.1, results
for the economic and environmental criteria are calculated.

The optimal result with maximum annual profit, at $9 079 300, can be seen in Table 4; and the optimal
result with minimum annual carbon emissions, at -1 869 100kg, can be seen in Table 5. These two results will
advance to be employed in the genetic algorithm analysis.

The calculated minima for both economic and environmental have also been listed in these two tables.
The two minima are used to calculate the least ideal possibility in TOPSIS.

Table 4 Economic Max./Min. Facilities ($9079300 and $144090 in Annual Profit)

Facilities Sports Comp. Ski/Trail Crop F. Ranch Regen. F. Sol. Arr. Agritrst Cn. Agrvltc F.

Economic Ideal (acres) 267 0 0 129 0 344 1 0
Economic Least Ideal (acres) 0 158 579 0 0 0 0 0

Table 5 Environmental Min./Max. Facilities (-1869100kg and +351000kg Annual CO2 Emissions)

Facilities Sports Comp. Ski/Trail Crop F. Ranch Regen. F. Sol. Arr. Agritrst Cn. Agrvltc F.

Environment Ideal (acres) 0 0 0 0 0 510 147 84
Environment Least Ideal (acres) 65 0 0 676 0 0 0 0



Team #2023001 Page 11 of 34

4.2.2 TOPSIS Results

These results are then applied to the TOPSIS model described in Section 3.4. We first set r to 4.86 to
standardize the relationship between environmental and economic based on the ranges found in the data.

|xb|
|yb|
≈ 4.86 (22)

h is also set to 2, making the final ratio/weighting between environmental to economic factors 1 : 2.
This is because we believe that, although environment is a very important factor, comparing solely carbon
emissions to the entirety of all the economic benefits would be an unfair comparison. There are 3 economic
factors and 1 environmental, so a 1-env. to 2-econ. weighting would best reflect our beliefs.

With r as 4.86 and h as 2, the coordinates of the ideal possibility are Ab = (18158600,−9083826) and the
coordinates of the least ideal possibility are Aw = (288180,1705860).

Next, the 19 manually determined points are plotted into TOPSIS and ranked according to ω, the result of
which can be seen in Table 6 below.

Table 6 Alternatives According to Judging Index sω; ranked best-worst

Weighting 0.95 - 0.45 Econ. 0.4 Econ. 0.35 - 0.25 Econ. 0.2 Econ. 0.15 - 0.1 Econ. 0.05 Econ.

Index ω 0.463650 0.457908 0.457321 0.431908 0.431316 0.430778

The top performing development option from TOPSIS, which will be modelled in GA along with the two
aforementioned results from linear programming, can be seen in Table 7. This option, with an annual profit
of $9047920 and annual CO2 emissions of −1094700 kg, is found at 0.95 - 0.45 Econ.

Table 7 Distribution of Top Option, according to TOPSIS

Facilities Sports Comp. Ski/Trail Crop F. Ranch Regen. F. Sol. Arr. Agritrst Cn. Agrvltc F.

Best Option (acres) 267 0 0 0 129 344 1 0

4.2.3 Genetic Algorithm Results
We then use the genetic algorithm to determine the positioning of facilities for each of the three ideal

results. This is done by following the GA process as is described in Section 3.5.

Figure 3 The Annotated and Plotted Map of All Land Types

• Cartesian coordinate system: The map is first plotted in the 2D Cartesian plane. The placement and
area of each land type is assumed from the given satellite map view and outlined using rectangles.
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The distribution of each land type except forest is as follows; the forest is the remainder of the area. A
limitation of this approach is the inability to accurately note the environment with rectangles, especially
when this map isn’t very visually distinguishable.

The tables in Appendix A specify the exact (x, y) coordinates of each rectangle’s diagonal vertices.

• Initialization: As described in Section 3.5.1, all inputs are fed to the genes in the form of DNA which,
in our instance, contains the lower left corner and width of the rectangles. This is the only information
needed to calculate the length of the rectangle with its area predetermined.

• Conversion: In this model, the DNA is 60 bits long. It is separated into 12 sections, each with a length
of 5, storing data up to 31. The first 4 sets of 5 (the first 20) manifest the x coordinate of the rectangle’s
bottom left vertex. The second 20 are similar but for y; and the last 20 are indications of the width of
each facility.

Figure 4 An Example of DNA String

• Objective Function Constraints:

– No Overlaps: The overlapping area function is created in accordance with the restrictions de-
scribed in Section 3.5.2 ensuring that facilities do not overlap with each other. To follow the re-
striction, the code will ensure the overlapping area between two rectangles is 0. The overlapping
area code can be seen in lines [31∼49] of Appendix C.

– No out-of-bounds: To ensure that land developments lie within the boundary, new restrictions
are set to ensure:
(a) the lower left corner of a facility does not exceed the hypotenuse of the lower left triangle;
(b) the upper right corner does not exceed the hypotenuse of the upper right triangle.
Both triangles are shown in pink in Figure 3. To incorporate this into the objective function, two
linear inequalities are used. Let (x, y) be the lower left corner, A be area, and w be width. This
gives the equation of the lower left hypotenuse as y = −8.5

6
x + 8.5 and the equation of the upper

right hypotenuse as y = −7.5
4.5

x+ 44.33333. The constraints are thus:

y ≥−8.5
6

x+ 8.5

y +
A

w
≤−7.5

4.5
(x+ w) + 44.33333

(23)

If any of the constraints are not met by a string of DNA, then it is immediately abandoned with its
fitness set to 0. Otherwise, if a string of DNA meets all of the constraints, its fitness value is calculated
according to the objective function (see line [84∼224] of Appendix C).

• Objective Function: Table 14 lists the values of the environmental degradation penalties EW , ED, EF ,
and EC to be employed in the objective function. To maximize the fitness of the DNA, the environmen-
tal degradation factor should have an inverse relationship with the preciousness of the environment.
Thus, the environmental factor is 30− total.

• Selection, Reproduction, and Mutation: DNA sequences then undergo the process of Genetic Algo-
rithm as written in Section 3.5. Their code appears in Appendix C.

• Additional Variable - Occupation Rate: Since TOPSIS grants the ratio between areas, there is one more
variable called occupation rate that must be decided by the decision makers. This variable dictates the
proportion of the total land area the development is going to occupy. Let this variable be named γ.
Then:

Acordinate = Aacres × 2.709γ. (24)
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• Application: The initial instance is generated in two ways, either randomly generated or hand-drawn.
With a lower occupation rate, random generation will be faster; but, when the occupation rate is 0.5
or higher, hand-drawing will be more efficient. To verify and debug the initial and final DNA, the
facilities are graphed according to the DNA string (see Appendix B).

GA also relies on user inputs to determine the size of the DNA (choice and justification described
above), population, crossover rate, and more. These are all determinate factors to the success of the
generation since the genetic algorithm only promises the maximum to the highest extent of conver-
gence given the user inputs. The user inputs used in our instance are listed below.

Table 8 User Inputs

DNA size Population Cross Rate Mutation Rate Generations width/x/y bounds
60 1000 0.8 0.002 400 [1,20] [0,20] [0,17.5]

• Results: With the aforementioned user inputs, the genetic algorithm runs across three different oc-
cupation rates throughout the three different models of facilities proposed by TOPSIS and linear pro-
gramming.

Table 9 Resulting Fitness of All 3 Cases, calculated via objective function

Occupation rate TOPSIS Best Economic Best Environmental Best
0.4 1620.07338413 1246.89606331 1530.62376101
0.5 1899.65084277 1473.23451274 1761.06401523
0.6 2020.18783949 1455.66527764 1996.19740878

The distribution of facilities on the land, as calculated from the TOPSIS Best option at an occupation
rate of 0.5, is provided in Figure 5. The result’s DNA string, graph, and converted DNA, among others,
are listed in Table 10. Similar maps and tables can be seen for the rest of the results in Appendix B. The
overall evaluation of the proposed land planning and allocation is in Figure 6.

Figure 5 Map of GA Best Option with 0.5 Occupa-
tion Rate Figure 6 Evaluation Result

Table 10 DNA-related Data of TOPSIS Best Option with 0.5 Occupation Rate
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4.2.4 Short- and Long-term Results

After applying all the obtained data into Equation (21) in Section 3.6, the function of total profit is:

Tp(t) = A

∫ t

0

(
− 500

t+ 10
+ 50

)0.3(
30

1 + ( 30
2.6
− 1)e−t

)0.7

(1+α)t−udu− 30−
∫ t

0

log (12u+ 1) (1 + α)t−u du (25)

where α is the inflation rate and A is the efficiency constant that measures the ratio of output and input of
labour and capital, respectively. In figure 7, the projected futures include three varieties: best-case, expected,
and worst-case futures. These projections are determined by adjusting the aforementioned constants (A and
α).

Figure 7 The Projected Future

In the short term, profits for all cases will be negative as construction costs must be covered, but the
production value is limited due to less labour and capital input. However, in the long term, profits will
grow from inflation rates and high production value. Better case scenarios project higher profits.

The best-case scenario predicts that fixed costs will be covered in year 15, resulting in a total profit of 43
million by year 25 and 261 million by year 50. The expected future, calculated using the most likely inflation
and efficiency values, forecasts that fixed costs will be covered in year 16, leading to a total profit of 28
million by year 25 and 138 million by year 50. In the worst-case scenario, fixed costs won’t be covered until
year 42, and the total profit will be 7 million by year 50. Despite this, however, the results of the model are
considered dependable profit-wise because even the worst-case scenario yields a positive total profit within
50 years.

4.3 Sensitivity Analysis

Sensitivity analysis must be conducted to assess the degree of uncertainty and variability and to identify
the parameters that have the greatest impact on the results. This information can then be used to refine the
model, optimize its parameters, or identify areas where further data collection may be needed.

4.3.1 Sensitivity Analysis of Linear Programming

There are two aspects that can be tested and manipulated to conduct a sensitivity analysis [4] of linear
programming: tight constraints [1] and shadow price [7].

Tight restrictions refer to constraints that are met with equality in the objective value, thus limiting it.
The restrictions in linear programming will always form a convex polygon, and the objective function is,
in essence, another line on the coordinate plane. To obtain the most optimal value, the objective function
will always intersect the polygon at one of its corners. Tight restrictions are the inequalities, which, when
plotted on the coordinate plane, form the corner intersected by the objective function. On the other hand,
loose restrictions are those that do not influence the result whatsoever. Nonetheless, the polygon might shift
in shape, thus altering the tight or loose status of the restrictions.



Team #2023001 Page 15 of 34

Shadow price refers to the change in the objective value that results from a change in the range of the tight
restrictions. As previously mentioned, tight restrictions are those that form the corner that will be intersected
by the objective function to reach the optimal solution. Thus, any change in their range will result in a return
value dependent on the magnitude of the change.

Figure 8 Linear Programming Demonstration in 2D; image taken from [5]

Tight constraints and shadow price are calculated for both the environmental and economic linear pro-
gramming systems. First, for the environmental linear programming system, there are three restrictions
tested as tight constraints. They are as follows:

1. the basic area restriction
∑n

i=1 x
A
i ≤ 741.316;

2. the societal benefit index restriction
∑n

i=1 Si × xA
i ≥ 3000;

3. the recreation index restriction
∑n

i=1Ri × xA
i ≥ 2000.

As is shown in Figure 9, the sensitivity analysis graph for the area restriction shows a linear decrease in
the range observed (67.5% to 132.5%), suggesting that as the restrictive range increases, the carbon emissions
decrease. At 67.5%, the restrictions oppose each other, making further optimization impossible.

The sensitivity analysis graph for societal benefit restrictions is piece-wise, comprising three distinct re-
gions with different slopes. The slope of 0 at the first part (50% to 74.5%) indicates a loose restriction before
74.5%. The second part’s positive slope indicates the return value from a percentage increase is unfavorable.
The third phase has a steeper slope, demonstrating a more unfavorable return value.

The sensitivity analysis graph for recreational opportunity restrictions is also piece-wise, with an almost
unnoticeable increase in the slope at the 140.5% point. Overall, it demonstrates unfavourable return values
for percentage increases in the constraining constant.

Figure 9 Sensitivity Analysis and Shadow Prices for Environmental Linear Programming System

In the economic linear programming system, the restrictions tested as tight constraints include:

1. the basic area restriction
∑n

i=1 x
A
i ≤ 741.316;

2. the societal benefit index restriction
∑n

i=1 Si × xA
i ≥ 3000;
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3. the third restriction, which is not recreation index, but rather the employment opportunity index re-
striction

∑n
i=1Oi × xA

i ≥ 4500.

As can be seen in Figure 10, these graphs almost exactly mirror the shadow price graphs of the environmental
tight constraints. Where decreases were seen previously, increases are seen here, and vice-versa. However,
there are still a few exceptions.

• In the societal restriction of the economic section, the graph exhibits a longer second phase with a
steeper slope in addition to a smoother transition from phase 2 to 3.

• The economic employment opportunity sensitivity graph is utterly distinct from the environment’s
recreation restriction. This graph has a slope of 0 from 50% to 69.5%, indicating a loose restriction
status there. After that, however, it has a sustained slope inside the observed range, with a direct
relationship between the decrease in profit and the increase in the constraining constant.

Figure 10 Sensitivity Analysis and Shadow Prices for Economic Linear Programming System

In conclusion, to reduce carbon emissions, either societal or recreational constraining constants should be
decreased, or area constraining constants should be increased. To increase profits, societal and employment
opportunity constraining constants should be decreased, or area constraining constants should be increased.
However, adjusting these factors would reduce the respective benefits provided by the land.

4.3.2 Senstivity Analysis of TOPSIS

One of the most significant uncertainty factors in TOPSIS model is the land developer’s opinion on the
weighting factor between the environment and the economy, which is assumed to be 0.33 Env. :0.66 Econ. in
our model.

To test and analyze the sensitivity of the model proposed, the weighting factor is changed from (0.2 :
0.8) ∼ (0.8 : 0.2), increasing by increments of (+0.1 : −0.1).

However, although the judging indexes changed, the overall ranking never changed drastically. Most
notably, the first two choices stayed the same throughout, as can be seen in Figure 11. This demonstrates the
reliability and stability of TOPSIS and, thus, the reliability and stability of its suggestion of the “best” land
development option.

Figure 11 TOPSIS Result Fluctuation Under Distinct Weighting
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5 Task 3: Re-evaluation for Micron Tech., Inc.
In October 2022, it was announced that Micron Technology, Inc. will build a large semiconductor fabri-

cation facility (fab) in Clay, a town just north of Syracuse. The fab is projected to bring with it many more
jobs, and thus many more people. To account for the changes that this fab brings to the local community, we
re-evaluate affected criteria and re-run our model based off of this.

5.1 Affected Factors
The question announces the establishment of a new large semiconductor fabricator(fab) near the land

being modelled, which is expected to have a significant impact on local employment, production value,
and tourism attraction. To comprehensively assess the impact of the new fab on our metrics, one needs to
carefully consider these factors’ influence on the data and model.

Figure 12 Affected Factors Figure 13 Adjusted Profits

5.1.1 Change in Facility Profit

• Solar array: Solar array heavily relies on the requirement of energy in the local community. The in-
troduction of the fab will increase the demand for energy, thereby increasing the profit of solar arrays.

• Crop farms; agrivoltaic farms; regenerative farms; and ranch: As food quality plays a decisive fac-
tor in Americans’ selection for food, the newly built fab will significantly decrease the profit of these
facilities as the demand for the product reduces.

• Sports Complex, Cross-country ski/trail: Both of these facilities’ profit relies heavily on attraction and
the living conditions of their local community. As this fad is estimated to introduce 49,000 more jobs
with a high annual salary of over $100,000, a significant rise in profit can be predicted.

• Agritourist center: Agritourist center’s resultant influence is a double-edged sword. The introduction
of fab boosts its tourism attraction while decreasing the demand for its agricultural goods.

Table 11 Estimated Adjustment to the Facility Profit, Contrast in Figure 13

Measurement Sports Comp. Ski/Trail Crop F. Ranch Regen. F. Sol. Arr. Agritrst Cn. Agrvltc F.

Pj ($ acre−1) 13557.69 ↑ 382.43 ↑ 161.35 ↓ 509.26 ↓ 287.37 ↓ 21070.95 ↑ 3999.91 − 193.58 ↓

5.1.2 Change in Restrictions

Many restrictions in the linear programming systems are based on the land’s property. With the introduc-
tion of the fab, some of these factors need to be reconsidered.



Team #2023001 Page 18 of 34

• Employment Index Restriction Removed: As this new fab introduces 9000 direct jobs with 100,000
annual salaries and more than 40,000 indirect jobs, the restriction for the employment index

∑n
i=1Oi ×

xA
i ≥ 4500 can be removed.

• Tourism Attraction Index Restriction Reduced: This fab greatly increases tourism and resident attrac-
tion, so the attraction index limit is reduced to 1000.

∑n
i=1 Ai × xA

i ≥ 1000

5.2 New Plan
Using the same linear programming and TOPSIS with minor changes to the models discussed above, one

could determine the ideal environmental, economical, and overall.

Table 12 Proposed Plan in the Presence of the Fab

Facilities Sports Comp. Ski/Trail Crop F. Ranch Regen. F. Sol. Arr. Agritrst Cn. Agrvltc F.

Environment Ideal (acres) 0 0 0 0 0 510− 147− 84−
Economic Ideal (acres) 123↓ 0 0 128↑ 0↓ 487↑ 3↑ 0

Overall Ideal (acres) 123↓ 0 0 128↑ 0↓ 487↑ 3↑ 0

Economic Ideal and Overall Ideal:

• Annual profit: $12006300↑

• Annual Carbon Emission: −1533120kg↓

Environment Ideal:

• Annual profit: $11350400−

• Annual Carbon Emission: −1869100kg−

With the given TOPSIS statistics, Genetic Algorithm can calculate the optimal placements of the facilities as
is shown in Figure 14. For specific data, see Appendix B Table 21)

Figure 14 Distribution of Facilities With Fab

In conclusion, with the introduction of the new fab that brings forward many opportunities and change,
the annual profit will see a significant rise of over 30% and the annual carbon emission of over 45%. However,
alongside these benefits is a decrease in the environmental degradation index of 11%.

6 Task 4: Generalizability
The most distinct aspect of this piece of land lies in the fact that the land is in a rural environment. This

means that there are far fewer restrictions around the use of the land, which allows purely mathematical
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modelling to approach an answer that is far more applicable in real life. Thus, in considering the generaliz-
ability of this model, one must also keep in mind that this model will be the most realistically applicable in
rural environments due to its very nature.

6.1 Familiar Contexts
(Note: The land in New York will be called “original”; our familiar land will be called “new”.)

Some of our team members have ancestry in Shenzhen, China, so Shenzhen will be used as the familiar
context in discussing this model’s applicability. The new land can be seen below, under Figure 15. It is 3km2

in size and lies roughly 26km east of the city center. Many new considerations exist for this plot, as can be
seen in Table 13.

Figure 15 New Land in Shenzhen

Table 13 Affected Criterias

Factor Change(s)

Pop. Density Adjust restrictions for P , Oi, Ai

Climate Remove cross-country skiing option
Landscape Adjustments to genetic algorithm and land distribution
Urbanization Restrictions around development size and emissions

• Population Density: The population of Shenzhen is far greater than that of Syracuse, with 12.59 million
for the former and 0.15 million for the latter [12]. As was the case in Task 3, more people means that
developments that attract people will increase in profit, and developments that don’t will decrease.
Restrictions around P , Oi, and Ai should be adjusted accordingly.

• Climate: The climate in Shenzhen is subtropical, whereas the climate around Syracuse is continental
[12]. This has implications for any building types that include outdoor requirements. Additionally, a
subtropical climate makes it impossible for cross-country skiing to be viable at all.

• Landscape: The original plot was only somewhat close to certain freshwater lakes and had five differ-
ent land types: forest, crop, wetland, developed and shrub. The new plot, however, is very close to
the South China Sea, and has three land types: forest, wetland, and developed. The genetic algorithm
must be modified to consider only these three land types, and changes must be made to accommodate
the new percentage distribution of each.

• Urbanization: Since the new land is so close to the Shenzhen city center, it will be heavily influenced
by urban planning. New restrictions should be placed around the maximum size of a given develop-
ment, and social factors Ri and Si should be adjusted to reflect the different needs and wants of an
urban society. Restrictions around carbon emissions E should also be tighter, to reflect the increased
seriousness of pollution in cities.
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6.2 Land in Other Countries
When considerations are expanded to an international level, many of the same parallels remain. As long as

considerations and adjustments are made to reflect the characteristics of the plot of land (such as urban/rural
setting, climate, landscape, and unique factors), our model can be applied and will be able to present a
solution. This reflects the versatility of linear programming: as long as variables are related in a linear
fashion, the model will produce results.

7 Conclusion and Evaluation

7.1 Evaluation of Strengths and Weaknesses

Strengths

• Linear programming allows maximizing of the land’s potential within given constraints, ensuring that
the output is as ideal as possible. The simplex algorithm is also highly efficient, drastically reducing
the time needed to calculate.

• TOPSIS provides a straightforward method for finding an optimal solution when distinct or even con-
flicting criteria are present and require a desired weighting factor.

• Genetic algorithm is powerful due to its ability to perform a global search, even in complex and non-
linear search spaces. It also tends to converge to a good solution thanks to the diversity maintained
within the population.

Weaknesses

• Linear programming is limited to problems with linear and continuous relationships between deci-
sion variables and the objective function. Additionally, it is highly sensitive to input data, so small
differences in data can result in significant changes in output.

• While TOPSIS assumes normalized data without outliers, outliers can still affect rankings and lead
to incorrect conclusions. Furthermore, because it requires the selection of a weighting factor, TOPSIS
results introduce subjectivity, making them less reliable objectively.

• Genetic algorithms can be time-consuming, requiring a large number of function evaluations to find
a good solution, leading to severe time complexity. Additionally, they can get stuck in local optima,
where the algorithm finds a suboptimal solution that is better than its neighbours but not the global
optimum.

7.2 Conclusion
The objective of this paper is to develop a comprehensive, quantitative approach for determining the

optimal planning and allocation of land. Our team achieves this by proposing a base mathematical model
that integrates linear programming, TOPSIS, and genetic algorithm. This model considers seven factors that
belong to either economic or social benefits, or environmental detriments. Furthermore, a short and long-
term analysis model incorporating key factors like inflation, labour cost, and operating cost is included to
evaluate the time-based feasibility of plans proposed by the base model. Results show that the model is
successful in determining the most optimal planning and allocation of land, even in unfamiliar situations,
such as new fabrication facilities built nearby or densely populated urban areas. A sensitivity analysis also
reveals the stability of TOPSIS results and possible approaches to further enhance each criteria in linear
programming. These findings demonstrate the versatility and applicability of the proposed approach in a
variety of contexts, as well as its reliability in producing results.
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Appendix A Substantiating Tables and Data

Table 14 Environmental Degradation Penalties

Wetland Developed Forest Crop
Biodiversity 8 1 9 2
Soil Erosion 7 0 10 2

Pollution 9 0 8 1
Total 24 1 27 5

E Factor 6 29 3 25

Table 15 Developed Coordi-
nates

lower-left vertex higher-right vertex
(3.5, 1.5) (5, 4)

(11.5, 0.5) (12.5, 2)
(0, 14) (0.5, 15)

(5.5, 13.5) (7, 15)
(19, 7) (20, 11)

(16, 15) (17, 16.5)

Table 16 Crop Land Coordi-
nates

lower-left vertex higher-right vertex
(0, 3.5) (3.5, 10)
(5, 0) (9, 4)

(4.5, 7) (6, 8.5)
(7.5, 7) (11, 10.5)

(4, 12.5) (5, 15)
(14.5, 0) (19, 5)
(17.5, 8) (19, 10)

Table 17 Wetland Coordinates

lower-left vertex higher-right vertex
(3.5, 4) (5, 6.5)
(8, 12) (11.5, 18.5)
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Appendix B All learning Curves and Final DNA of Genetic
Algorithm

Table 18 Further DNA-related Data of the TOPSIS Overall Best option with 0.4 - 0.6 Occupation Rate
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Table 19 Further DNA-related Data of the Economic best option with 0.4 - 0.6 Occupation Rate
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Table 20 Further DNA-related Data of the Environmental best option with 0.4 - 0.6 Occupation Rate

Table 21 Further DNA-related Data of different best option with 0.5 Occupation Rate with the addition of
factory
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Appendix C Genetic Algorithm Code

Table 22 Appendix Code of GA Processes

GA Process Code Lines

Objective Function [84∼224]
Conversion [230∼244]

Natural Selection [247∼254]
Reproduction [257∼262]

Mutation [265∼269]

"""

Visualize Genetic Algorithm to find a maximum point in a function.

"""

import numpy as np

import matplotlib.pyplot as plt

DNA_SIZE = 5 * 3 * 4 # DNA length

POP_SIZE = 1000 # population size

CROSS_RATE = 0.8 # mating probability (DNA crossover)

MUTATION_RATE = 0.002 # mutation probability

N_GENERATIONS = 400

length_bound = [1, 20] # x upper and lower bounds

x_bound = [0, 20]

y_bound = [0, 17.5]

# Python program to find total area of two

# overlapping Rectangles

# Returns Total Area of two overlap

# rectangles

def binary_to_decimal(binary_string):

decimal = 0

for i in range(len(binary_string)):

digit = int(binary_string[i])

power = 4 - i

decimal += digit * (2 ** power)

return decimal

def overlappingArea(l1, r1, l2, r2):

x = 0

y = 1

’’’ Length of intersecting part i.e

start from max(l1[x], l2[x]) of

x-coordinate and end at min(r1[x],

r2[x]) x-coordinate by subtracting

start from end we get required

lengths ’’’

x_dist = (min(r1[x], r2[x]) -

max(l1[x], l2[x]))

y_dist = (min(r1[y], r2[y]) -

max(l1[y], l2[y]))
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areaI = 0

if x_dist > 0 and y_dist > 0:

areaI = x_dist * y_dist

return areaI

#all environmental factors

Ew = 30 - 24

Ed = 30 - 1

Ef = 30 - 27

Ec = 30 - 5

osc_area = 267 * 0.6 / 2.709

rf_area = 129 * 0.6 / 2.709

sa_area = 344 * 0.6 / 2.709

ac_area = 1 * 0.6 / 2.709

cro = [[[4, 12.5], [5, 15]],

[[17.5, 8], [19, 10]],

[[7.5, 7], [11, 10.5]],

[[4.5, 7], [6, 8.5]],

[[0, 3.5], [3.5, 10]],

[[14.5, 0], [19, 5]],

[[5, 0], [9, 4]]]

dev = [[[16, 15], [17, 16.5]],

[[0, 14], [0.5, 15]],

[[5.5, 13.5], [7,15]],

[[19, 7], [20, 11]],

[[3.5, 1.5], [5, 4]],

[[11.5, 0.5], [12.5, 2]]]

wet = [[[8, 12], [11.5, 18.5]],

[[3.5, 4], [5, 6.5]]]

squareconstrains = [[[0, 15], [8, 17.5]],

[[0, 17.5], [20, 1000]],

[[20, 0], [1000, 17.5]]]

def F(osc_x, rf_x, sa_x, ac_x, osc_y, rf_y, sa_y, ac_y, osc_width, rf_width, sa_width, ac_width):

global osc_area, rf_area, sa_area, ac_area, dev, cro, wet, Ew, Ec, Ef, Ed

total = 0

if(osc_width == 0):

return 0

if (rf_width == 0):

return 0

if (sa_width == 0):

return 0

if (ac_width == 0):

return 0

osc_length = osc_area / osc_width

rf_length = rf_area / rf_width

sa_length = sa_area / sa_width

ac_length = ac_area / ac_width

if(osc_y < -8.5/6 * osc_x + 8.5):

return 0

if (rf_y < -8.5 / 6 * rf_x + 8.5):
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return 0

if (ac_y < -8.5 / 6 * ac_x + 8.5):

return 0

if (sa_y < -8.5 / 6 * sa_x + 8.5):

return 0

if (osc_y + osc_length > -7.5 / 4.5 * (osc_x + osc_width) + 44.33333):

return 0

if (rf_y + rf_length > -7.5 / 4.5 * (rf_x + rf_width) + 44.33333):

return 0

if (ac_y + ac_length > -7.5 / 4.5 * (ac_x + ac_width) + 44.33333):

return 0

if (sa_y + sa_length > -7.5 / 4.5 * (sa_x + sa_width) + 44.33333):

return 0

osc = [[osc_x, osc_y], [osc_x + osc_width, osc_y + osc_length]]

rf = [[rf_x, rf_y], [rf_x + rf_width, rf_y + rf_length]]

sa = [[sa_x, sa_y], [sa_x + sa_width, sa_y + sa_length]]

ac = [[ac_x, ac_y], [ac_x + ac_width, ac_y + ac_length]]

#Outdoor Sport Complex

area = osc_area

#developed

for i in range(0, 6):

total += Ed * overlappingArea(osc[0], osc[1], dev[i][0], dev[i][1])

area -= overlappingArea(osc[0], osc[1], dev[i][0], dev[i][1])

area -= overlappingArea(osc[0], osc[1], dev[i][0], dev[i][1])

#Crop

for i in range(0, 7):

total += Ed * overlappingArea(osc[0], osc[1], cro[i][0], cro[i][1])

area -= overlappingArea(osc[0], osc[1], cro[i][0], cro[i][1])

#Wetland

for i in range(0, 2):

total += Ed * overlappingArea(osc[0], osc[1], wet[i][0], wet[i][1])

area -= overlappingArea(osc[0], osc[1], wet[i][0], wet[i][1])

#taking off the part that is not in the map

for j in range(0, 3):

if (overlappingArea(osc[0], osc[1], squareconstrains[j][0], squareconstrains[j][1]) > 0):

return 0

total += area * Ef

# Regenetive farm

area = rf_area

# developed

for i in range(0, 6):

total += Ed * overlappingArea(rf[0], rf[1], dev[i][0], dev[i][1])

area -= overlappingArea(rf[0], rf[1], dev[i][0], dev[i][1])

# Crop

for i in range(0, 7):

total += Ec * overlappingArea(rf[0], rf[1], cro[i][0], cro[i][1])

area -= overlappingArea(rf[0], rf[1], cro[i][0], cro[i][1])

# Wetland

for i in range(0, 2):

total += Ew * overlappingArea(rf[0], rf[1], wet[i][0], wet[i][1])

area -= overlappingArea(rf[0], rf[1], wet[i][0], wet[i][1])



Team #2023001 Page 29 of 34

# taking off the part that is not in the map

for j in range(0, 3):

if (overlappingArea(rf[0], rf[1], squareconstrains[j][0], squareconstrains[j][1]) > 0):

return 0

total += area * Ef

#Solar array

area = sa_area

# developed

for i in range(0, 6):

total += Ed * overlappingArea(sa[0], sa[1], dev[i][0], dev[i][1])

area -= overlappingArea(sa[0], sa[1], dev[i][0], dev[i][1])

# Crop

for i in range(0, 7):

total += Ec * overlappingArea(sa[0], sa[1], cro[i][0], cro[i][1])

area -= overlappingArea(sa[0], sa[1], cro[i][0], cro[i][1])

# Wetland

for i in range(0, 2):

total += Ew * overlappingArea(sa[0], sa[1], wet[i][0], wet[i][1])

area -= overlappingArea(sa[0], sa[1], wet[i][0], wet[i][1])

# taking off the part that is not in the map

for j in range(0, 3):

if (overlappingArea(sa[0], sa[1], squareconstrains[j][0], squareconstrains[j][1]) > 0):

return 0

total += area * Ef

# agriculture center

area = ac_area

# developed

for i in range(0, 6):

total += Ed * overlappingArea(ac[0], ac[1], dev[i][0], dev[i][1])

area -= overlappingArea(ac[0], ac[1], dev[i][0], dev[i][1])

# Crop

for i in range(0, 7):

total += Ec * overlappingArea(ac[0], ac[1], cro[i][0], cro[i][1])

area -= overlappingArea(ac[0], ac[1], cro[i][0], cro[i][1])

# Wetland

for i in range(0, 2):

total += Ew * overlappingArea(ac[0], ac[1], wet[i][0], wet[i][1])

area -= overlappingArea(ac[0], ac[1], wet[i][0], wet[i][1])

# taking off the part that is not in the map

for j in range(0, 3):

if (overlappingArea(ac[0], ac[1], squareconstrains[j][0], squareconstrains[j][1]) > 0):

return 0

total += area * Ef

#check if 4 rectangles touch each other

if(overlappingArea(ac[0], ac[1], sa[0], sa[1]) > 0):

return 0

if (overlappingArea(osc[0], osc[1], sa[0], sa[1]) > 0):

return 0

if (overlappingArea(rf[0], rf[1], sa[0], sa[1]) > 0):

return 0
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if (overlappingArea(rf[0], rf[1], ac[0], ac[1]) > 0):

return 0

if (overlappingArea(rf[0], rf[1], osc[0], osc[1]) > 0):

return 0

if (overlappingArea(osc[0], osc[1], ac[0], ac[1]) > 0):

return 0

return total

# find non-zero fitness for selection

def get_fitness(pred): return pred

# convert binary DNA to decimal and normalize it to a range(0, 5)

def translateDNA(pop):

newpop = []

for i in range(0, POP_SIZE):

newpop.append([])

for i in range(0, POP_SIZE):

for j in range(0, DNA_SIZE//3, 5):

string = str(pop[i][j]) + str(pop[i][j+1]) + str(pop[i][j+2]) + str(pop[i][j+3]) +

str(pop[i][j+4])

newpop[i].append(binary_to_decimal(string) / float(2**5-1) * x_bound[1])

for j in range(DNA_SIZE//3, DNA_SIZE//3 * 2, 5):

string = str(pop[i][j]) + str(pop[i][j+1]) + str(pop[i][j+2]) + str(pop[i][j+3]) +

str(pop[i][j+4])

newpop[i].append(binary_to_decimal(string) / float(2**5-1) * y_bound[1])

for j in range(DNA_SIZE//3 * 2, DNA_SIZE, 5):

string = str(pop[i][j]) + str(pop[i][j+1]) + str(pop[i][j+2]) + str(pop[i][j+3]) +

str(pop[i][j+4])

newpop[i].append(binary_to_decimal(string) / float(2**5-1) * length_bound[1])

return newpop

def select(pop, fitness): # nature selection wrt pop’s fitness

if(fitness.sum() == 0):

pop = np.random.randint(2, size=(POP_SIZE, DNA_SIZE))

return pop

else:

idx = np.random.choice(np.arange(POP_SIZE), size=POP_SIZE, replace=True,

p=fitness/(fitness.sum()))

return pop[idx]

def crossover(parent, pop): # mating process (genes crossover)

if np.random.rand() < CROSS_RATE:

i_ = np.random.randint(0, POP_SIZE, size=1) # select another individual

from pop

cross_points = np.random.randint(0, 2, size=DNA_SIZE).astype(bool) # choose crossover points

parent[cross_points] = pop[i_, cross_points] # mating and produce one child

return parent

def mutate(child):

for point in range(DNA_SIZE):

if np.random.rand() < MUTATION_RATE:

child[point] = 1 if child[point] == 0 else 0
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return child

pop = np.random.randint(2, size=(POP_SIZE, DNA_SIZE)) # initialize the pop DNA

new_row = np.array([1 ,0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 1, 0, 1 ,1, 1, 1, 0, 1,1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0 ,0, 0, 0, 0,

0, 1])

pop[0] = new_row

a = []

b = []

for _ in range(N_GENERATIONS):

a.append(_)

print("This is generation ->", _)

F_values = []

list2 = translateDNA(pop)

for i in range(0, POP_SIZE):

list1 = list2[i]

F_values.append(F(list1[0], list1[1], list1[2], list1[3],

list1[4], list1[5], list1[6], list1[7],

list1[8], list1[9], list1[10], list1[11])) # compute function value by extracting

DNA

F_values = np.asarray(F_values)

print(F_values, "F_values")

fitness = get_fitness(F_values)

b.append(max(fitness))

print(max(fitness))

print("Most fitted DNA: ", pop[np.argmax(fitness), :])

pop = select(pop, fitness)

pop_copy = pop.copy()

for parent in pop:

child = crossover(parent, pop_copy)

child = mutate(child)

parent[:] = child # parent is replaced by its child

plt.scatter(a, b)

plt.show()

Appendix D Genetic Algorithm DNA Graph Code
string = "1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0

1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1"

import turtle

import random

# setting up of all the turtles, game chart and screen

screen = turtle.Screen()

screenW = 1280

screenH = 720

pen = turtle.Turtle()

osc_area = 267 * 0.6 / 2.709

rf_area = 129 * 0.6 / 2.709



Team #2023001 Page 32 of 34

sa_area = 344 * 0.6 / 2.709

ac_area = 1 * 0.6 / 2.709

DNA_SIZE = 5 * 3 * 4 # DNA length

POP_SIZE = 400 # population size

CROSS_RATE = 0.8 # mating probability (DNA crossover)

MUTATION_RATE = 0.003 # mutation probability

N_GENERATIONS = 1000

length_bound = [1, 20] # x upper and lower bounds

x_bound = [0, 20]

y_bound = [0, 17.5]

area = [osc_area, rf_area, sa_area, ac_area]

def drawrec(l1, l2, r1, r2):

pen.penup()

pen.goto(l1, l2)

pen.pendown()

pen.goto(l1, r2)

pen.goto(r1, r2)

pen.goto(r1, l2)

pen.goto(l1, l2)

newstring = ""

for x in range(0, 119, 2):

newstring += string[x]

def binary_to_decimal(binary_string):

decimal = 0

for i in range(len(binary_string)):

digit = int(binary_string[i])

power = 4 - i

decimal += digit * (2 ** power)

return decimal

def translateDNA(given):

newpop = [[],[],[],[]]

for j in range(0, DNA_SIZE//3, 5):

string = str(given[j]) + str(given[j + 1]) + str(given[j + 2]) + str(given[j+3]) +

str(given[j+4])

newpop[(j) // 5].append(binary_to_decimal(string) / float(2**5-1) * x_bound[1])

for j in range(DNA_SIZE//3, DNA_SIZE//3 * 2, 5):

string = str(given[j]) + str(given[j+1]) + str(given[j+2]) + str(given[j+3]) +

str(given[j+4])

newpop[(j-20) // 5].append(binary_to_decimal(string) / float(2**5-1) * y_bound[1])

for j in range(DNA_SIZE//3 * 2, DNA_SIZE, 5):

string = str(given[j]) + str(given[j+1]) + str(given[j+2]) + str(given[j+3]) +

str(given[j+4])

newpop[(j-40) // 5].append(binary_to_decimal(string) / float(2**5-1) * length_bound[1])

return newpop

array = translateDNA(newstring)

print(array)

x =10

pen.goto(6 * x, 0)

pen.goto(0, 8 * x)

pen.goto(0, 15 * x)

pen.goto(8 * x, 15 * x)

pen.goto(8 * x, 17.5 * x)

pen.goto(15.5 * x, 17.5 * x)
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pen.goto(20 * x, 11 * x)

pen.goto(20 * x, 0 * x)

pen.goto(6 * x, 0)

y = x

for x in range(0, 4):

drawrec(y * array[x][0], y * array[x][1], y *(array[x][0] + array[x][2]), y*(array[x][1] +

area[x] / array[x][2]))

turtle.done()

Appendix E Linear Programming Code
% Create optimization variables

b = optimvar("b",1,8,"LowerBound",0);

% Set initial starting point for the solver

initialPoint.b = zeros(size(b));

% Create problem

problem = optimproblem("ObjectiveSense","Maximize");

% Define problem objective

problem.Objective = 0.05 * (-4.86) * (200 * b(1) +50*b(2)

-25*b(3)+500*b(4)-20*b(5)-3330*b(6)-2*b(7)-2030*b(8)) + 0.95 * 2 * (13557.69* b(1)

+382.43*b(2) + 161.35* b(3)+ 509.26*b(4) + 287.37*b(5)+

21070.95*b(6)+3999.91*b(7)+193.58*b(8));

% Define problem constraints

problem.Constraints.constraint1 = sum(b) <= 741;

problem.Constraints.constraint2 = 3 * b(1) +4*b(2) +8*b(3)+9*b(4)+9*b(5)+3*b(6)+6*b(7)+7*b(8) >=

3000;

problem.Constraints.constraint3 = 10 * b(1) +9*b(2) +b(3)+2*b(4)+2*b(5)+b(6)+9*b(7)+2*b(8) >=

2000;

problem.Constraints.constraint4 = 9.5* b(1) +b(2) +7.5 * b(3)+ 8.5*b(4)+8.5*b(5)+2.5 *

b(6)+9*b(7)+7.5*b(8) >= 4500;

problem.Constraints.constraint5 = 9.5* b(1) +8 * b(2) +b(3)+ b(4)+1.5*b(5)+ b(6)+7*b(7)+b(8) >=

1500;

% Display problem information

show(problem);

% Solve problem

[solution,objectiveValue,reasonSolverStopped] = solve(problem,initialPoint);

% Display results

solution

reasonSolverStopped

objectiveValue

% Remove Variable

clearvars b initialPoint reasonSolverStopped objectiveValue
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Appendix F TOPSIS Code
#include<iostream>

#include<cmath>

using namespace std;

int main(){

double pr;

double eco;

double array1[8];

double bd, wd;

double array[8][8] = {

{123,0,0,128,0,487,3,0},

{0,0,0,0,0,510,147,84},

{0,0,0,0,54,536,151,0},

{0,0,0,0,2,511,147,81},

{0,0,0,0,0,510,147,84}

};

for(int i = 0; i < 5;i ++){

pr = 13557.69 * array[i][0] + 382.43 * array[i][1] + 161.35 * array[i][2]

+ 509.26 * array[i][3] + 287.37 * array[i][4] + 21070.95 * array[i][5]

+ 3999.91 * array[i][6] + 193.58 * array[i][7];

eco = 200 * array[i][0] + 50 * array[i][1] - 25 * array[i][2]

+ 500* array[i][3] - 20 * array[i][4] - 3330 * array[i][5] - 2 * array[i][6]

- 2030 * array[i][7];

cout<<pr<<endl<<eco<<endl;

bd = sqrt(pow(2 * (12006000 - pr),2) + pow(4.86 * (-1869100 - pr),2));

wd = sqrt(pow(2 * (118250 - pr),2) + pow(4.86 * (351000 - pr),2));

array1[i] = wd/(bd + wd);

}

for (int i = 0 ; i < 5; i ++){

cout<<array1[i]<<endl;

}

return 0;

}
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